
1

PYTHON

2

1. Features of Python

2. Syntax and Style

3. Python Objects

4. Numbers

5. Sequences

6. Strings

7. Lists

8. Tuples

9. Dictionaries

10. Conditionals and Loops

11. Files

12. Input and Output

13. Errors and Exceptions

14. Functions

15. Modules

16. Classes and OOP

17. Execution Environment.

3

Features of Python

1. Simple

2. Easy to Learn

3. Free and Open Source

4. High Level Language

5. Portable

6. Interpreted

7. Object oriented

8. Extensible

9. Embeddable

10. Extensive Libraries

4

Simple

Python is a simple and minimalistic language. Reading a good Python program

feels almost like reading English, although very strict English! This pseudo-code

nature of Python is one of its greatest strengths. It allows you to concentrate on the

solution to the problem rather than the language itself.

Easy to Learn

As you will see, Python is extremely easy to get started with. Python has an

extraordinarily simple syntax, as already mentioned.

Free and Open Source

Python is an example of a FLOSS (Free/LibrÃ© and Open Source Software). In

simple terms, you can freely distribute copies of this software, read it's source code,

make changes to it, use pieces of it in new free programs, and that you know you

can do these things. FLOSS is based on the concept of a community which shares

knowledge. This is one of the reasons why Python is so good - it has been created

and is constantly improved by a community who just want to see a better Python.

High-level Language

When you write programs in Python, you never need to bother about

the low-level details such as managing the memory used by your program, etc.

5

Portable

Due to its open-source nature, Python has been ported (i.e. changed to make it

work on) to many platforms. All your Python programs can work on any of these

platforms without requiring any changes at all if you are careful enough to avoid any

system-dependent features.

You can use Python on Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2,

Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion, Acorn

RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE and even PocketPC !

Interpreted

A program written in a compiled language like C or C++ is converted from the

source language i.e. C or C++ into a language that is spoken by your computer

(binary code i.e. 0s and 1s) using a compiler with various flags and options. When

you run the program, the linker/loader software copies the program from hard disk

to memory and starts running it.

Python, on the other hand, does not need compilation to binary. You just run

the program directly from the source code. Internally, Python converts the source

code into an intermediate form called bytecodes and then translates this into the

native language of your computer and then runs it. All this, actually, makes using

Python much easier since you don't have to worry about compiling the program,

making sure that the proper libraries are linked and loaded, etc, etc. This also

makes your Python programs much more portable, since you can just copy your

Python program onto another computer and it just works!

6

Object Oriented

Python supports procedure-oriented programming as well as object-oriented

programming. In procedure-oriented languages, the program is built around procedures

or functions which are nothing but reusable pieces of programs. In object-oriented

languages, the program is built around objects which combine data and functionality.

Python has a very powerful but simplistic way of doing OOP, especially when compared

to big languages like C++ or Java.

Extensible

If you need a critical piece of code to run very fast or want to have some piece of

algorithm not to be open, you can code that part of your program in C or C++ and then

use them from your Python program.

Embeddable

You can embed Python within your C/C++ programs to give 'scripting' capabilities

for your program's users.

Extensive Libraries

The Python Standard Library is huge indeed. It can help you do various things

involving regular expressions, documentation generation, unit testing, threading, databases,

web browsers, CGI, ftp, email, XML, XML-RPC, HTML, WAV files, cryptography, GUI

(graphical user interfaces), Tk, and other system-dependent stuff. Remember, all this is

always available wherever Python is installed. This is called the 'Batteries Included'

philosophy of Python.

7

INTRODUCTION

1. Python is a rich and powerful language, but also one that is easy to learn.

2. You can start the Python interpreter from the command line. Change to the

directory where the interpreter lives, or add the directory to your path. Then

type: python On UNIX, Python typically lives in /usr/local/bin; on Windows,

Python probably lives in c:\python20.

3. Python creates variables the first time you use them (you never need to

explicitly declare them beforehand), and automatically cleans up the data

they reference when they are no longer needed.

This includes the following contents

1. Statements and syntax

2. Variable assignment

3. Identifiers and keywords

4. Basic style guidelines

5. Memory management

6. First Python application

SYNTAX AND STYLE:

8

Statements and Syntax

Some rules and certain symbols are used with regard to statements in Python:

1. Hash mark (#) indicates Python comments

2. NEWLINE (\n) is the standard line separator (one statement per line)

3. Backslash (\) continues a line

4. Semicolon (;) joins two statements on a line

5. Colon (:) separates a header line from its suite

6. Statements (code blocks) grouped as suites

7. Suites delimited via indentation

8. Python files organized as "modules"

Comments (#)

Python comment statements begin with the pound sign or hash symbol (#). A

comment can begin anywhere on a line. All characters following the # to the end of the

line are ignored by the interpreter. Use them wisely and judiciously.

Continuation (\)

Python statements are, in general, delimited by NEWLINEs, meaning one statement per

line. Single statements can be broken up into multiple lines by use of the backslash. The

backslash symbol (\) can be placed before a NEWLINE to continue the current

statement onto the next line.

9

Example

check conditions

if (weather_is_hot == 1) and \

(shark_warnings == 0):

send_goto_beach_mesg_to_pager()

There are two exceptions where lines can be continued without backslashes. A single

statement can take up more than one line when (1) container objects are broken up

between elements over multiple lines, and when (2) NEWLINEs are contained in strings

enclosed in triple quotes.

display a string with triple quotes

print '''hi there, this is a long message for you that goes over

multiple lines… you will find out soon that triple quotes in

Python allows this kind of fun! it is like a day on the beach!'''

set some variables

go_surf, get_a_tan_while, boat_size, toll_money = (

1,'windsurfing', 40.0, -2.00)

Multiple Statement Groups as Suites (:)

Groups of individual statements making up a single code block are called "suites" in

Python. Compound or complex statements, such as if, while, def, and class, are those

which require a header line and a suite. Header lines begin the statement (with the

keyword) and terminate with a colon (:) and are followed by one or more lines which

make up the suite. We will refer to the combination of a header line and a suite as a

clause.

10

Suites Delimited via Indentation

Python employs indentation as a means of delimiting blocks of code. Codes at

inner levels are indented via spaces or TABs. Indentation requires exact indentation, in

other words, all the lines of code in a suite must be indented at the exact same level.

Indented lines starting at different positions or column numbers are not allowed; each

line would be considered part of another suite and would more than likely result in

syntax errors.

Multiple Statements on a Single Line (;)

The semicolon (;) allows multiple statements on the single line given that neither statement starts a

new code block. Here is a sample snip using the semicolon:

Example:

Importing a class extends two double line using semicolon

import sys; x = 'foo';

sys.stdout.write(x + '\n')

which is similar to importing statement

import sys; x = 'foo' sys.stdout.write(x + '\n')

caution the reader to be wary of the amount of usage of chaining multiple statements on individual

lines since it makes code much less readable. You decide:

import sys

x = 'foo'

sys.stdout.write(x + '\n')

In our example, separating the code to individual lines makes for remarkably improved

readerfriendliness.

11

Modules

1. Each Python script is considered a module.

2. Modules have a physical presence as disk files.

3. When a module gets large enough or has diverse enough functionality, it

may make sense to move some of the code out to another module.

4. Code that resides in modules may belong to an application (i.e., a script that

is directly executed), or may be executable code in a library-type module

that may be "imported" from another module for invocation.

Variable Assignment

This section describes variable assignment and about the identifiers which make valid

variables.

Equal sign (=) is the assignment operator

The equal sign (=) is the main Python assignment operator

Example of variable assignment

anInt = -12

String = 'cart‘

This assignment does not explicitly assign a value to a variable, although it may appear

that way from your experience with other programming languages. In Python, objects

are referenced, so on assignment, a reference (not a value) to an object is what is being

assigned, whether the object was just created or was a pre-existing object.

12

Statements such as the following are invalid in Python:

>>> x = 1

>>> y = (x = x + 1) # assignments not expressions!

File "<stdin>", line 1

y = (x = x + 1)

^

SyntaxError: invalid syntax

Beginning in Python 2.0, the equals sign can be combined with an arithmetic operation

and the resulting value reassigned to the existing variable. Known as augmented

assignment, statements such as

x = x + 1

can now be written as

x += 1

Python does not support pre-/post-increment nor pre-/post-decrement operators such as

x++ or --x.

How To Do a Multiple Assignment

>>> x = y = z = 1

>>> x

1

>>> y

1

>>> z

1

13

In the above example, an integer object (with the value 1) is created, and x, y, and z are

all assigned the same reference to that object. This is the process of assigning a single

object to multiple variables. It is also possible in Python to assign multiple objects to

multiple variables.

How to Do a "Multuple" Assignment

Another way of assigning multiple variables is using what we shall call the "multuple“

assignment. This is not an official Python term, but we use "multuple" here because

when assigning variables this way, the objects on both sides of the equals sign are

tuples,

>>> x, y, z = 1, 2, 'a string'

>>> x

1

>>> y

2

>>> z

'a string'

In the above example, two integer objects (with values 1 and 2) and one string

object are assigned to x, y, and z respectively. Parentheses are normally used to denote

tuples, and although they are optional,

we recommend them anywhere they make the code easier to read:

>>> (x, y, z) = (1, 2, 'a string')

14

If you have ever needed to swap values in other languages like C, you will be reminded

that a temporary variable, i.e., tmp, is required to hold one value which the other is being

exchanged:

/* swapping variables in C */

tmp = x;

x = y;

y = tmp;

In the above C code fragment, the values of the variables x and y are being exchanged.

The tmp variable is needed to hold the value of one of the variables while the other is

being copied into it. After that step, the original value kept in the temporary variable can

be assigned to the second variable. One interesting side effect of Python's "multuple"

assignment is that we no longer need a temporary variable to swap the values of two

variables.
swapping variables in Python

>>> (x, y) = (1, 2)

>>> x

1

>>> y

2

>>> (x, y) = (y, x)

>>> x

2

>>> y

15

Identifiers

Identifiers are the set of valid strings which are allowed as names in a computer

language. From this all-encompassing list, we segregate out those which are keywords,

names that form a construct of the language. Such identifiers are reserved words which

may not be used for any other purpose, or else a syntax error (Syntax Error exception)

will occur. Python also has an additional set of identifiers known as built-ins, and

although they are not reserved words, use of these special names is not recommended.

Valid Python Identifiers

The rules for Python identifier strings are not unlike most other high-level

programming languages:

First character must be letter or underscore (_)

Any additional characters can be alphanumeric or underscore

Case-sensitive

No identifiers can begin with a number, and no symbols other than the

underscore are ever allowed.

Keywords

Python currently has twenty-eight keywords. Generally, the keywords in any language

should remain relatively stable, but should things ever change (as Python is a growing

and evolving language), a list of keywords as well as an iskeyword () function are

available in the keyword module.

16

Break,except,import,print,class,exec,in,raise,continue,finally,is,return,def,for,lamb

da,try,del,from, and, elif, global, or, assert, else, if, pass, not and while

These are the keywords of python language

Built-ins

In addition to keywords, Python has a set of "built-in" names which are either set and/or

used by the interpreter that are available at any level of Python code. Although not

keywords, built-ins should be treated as "reserved for the system" and not used for any

other purpose. However, some circumstances may call for overriding (a.k.a. redefining,

replacing) them. Python does not support overloading of identifiers, so only one name

"binding" may exist at any given time.

Special Underscore Identifiers

Python designates (even more) special variables with underscores both prefixed and

suffixed. We will also discover later that some are quite useful to the programmer while

others are unknown or useless. Here is a summary of the special underscore usage in

Python:

_xxx do not import with 'from module import *'

_xxx__ system-defined name

_xxx request private name mangling in classes

17

Basic Style Guidelines

Comments

You do not need to be reminded that comments are useful both to you and those who

come after you. This is especially true for code that has been untouched by man (or

woman) for a time (that means several months in software development time).

Comments should not be absent, nor there novellas. Keep the comments explanatory,

clear, short, and concise, but get them in there. In the end, it saves time and energy for

everyone.

Documentation

Python also provides a mechanism whereby documentation strings can be retrieved

dynamically through the __doc__ special variable. The first unassigned string in a

module, class declaration, or function declaration can be accessed through by using

obj.__doc__ where obj is the module, class, or function name.

Indentation

Since indentation plays a major role, you will have to decide on a spacing style that is

easy to read as well as the least confusing. Common sense also plays a recurring role in

choosing how many spaces or columns to indent.

18

1 or 2 probably not enough; difficult to determine which block of code

statements belong to

8 to 10 may be too many; code which has many embedded levels will

wraparound, causing the source to be difficult to read

Four (4) spaces is very popular, not to mention being the preferred choice of Python's

creator. Five (5) and six (6) are not bad, but text editors usually do not use these

settings, so they are not as commonly used. Three (3) and seven (7) are borderline

cases. As far as TABs go, bear in mind that different text editors have different concepts

of what TABs are. It is advised not to use TABs if your code will live and run on different

systems or be accessed with different text editors.

Choosing Identifier Names

Although variable length is no longer an issue with programming languages of

today, it is still a good idea to keep name sizes reasonable. The same applies for naming

your modules (Python files).

19

Module Structure and Layout

Modules are simply physical ways of logically organizing all your Python code. Within

each file, you should set up a consistent and easy-to-read structure. One such layout is

the following:

(1) startup line (Unix) #usr/bin/env python

(2) module documentation “this is test module”

(3) module imports import sys

(4) variable declarations debug=1

(5) class declarations class fooclass:

“foo Class”

pass

(6) function declarations

Def test();

“test function”

foo=fooclass();

if debug:

print ‘ran test’

20

21

Python uses the object model abstraction for data storage. Any construct which contains

any type of value is an object. Although Python is classified as an "object-oriented

programming language". OOP is not required to create perfectly working Python

applications. You can certainly write a useful Python script without the use of classes

and instances. However, Python's object syntax and architecture certainly encourage or

"provoke" this type of behavior. Let us now take a closer look at what a Python "object"

is. All Python objects have the following three characteristics:

an identity, a type, and a value.

IDENTITY- Unique identifier that differentiates an object from all others. Any object's

identifier can be obtained using the id() built-in function. This value is as close as you will

get to a "memory address" in Python (probably much to the relief of some of you). Even

better is that you rarely, if ever, access this value, much less care what it is at all.

TYPE- An object's type indicates what kind of values an object can hold, what operations

can be applied to such objects, and what behavioral rules these objects are subject to.

You can use the type() built-in function to reveal the type of a Python object. Since types

are also objects in Python, type() actually returns an object to you rather than a simple

literal.

VALUE Data item that is represented by an object.

22

Standard Types

The basic standard data types that python supports are:

1. Numbers (four separate sub-types)

2. Regular or "Plain" Integer

3. Long Integer

4. Floating Point Real Number

5. Complex Number

6. String

7. List

8. Tuple

9. Dictionary

Other Built-in Types:

Other types includes the following

1. None

2. File

3. Function

4. Module

5. Class

6. Class Instance and Method

23

Code Objects

1. Code objects are executable pieces of Python source that are byte-compiled,

usually as return values from calling the compile() built-in function.

2. Such objects are appropriate for execution by either exec or by the eval()

built-in function.

3. Code objects themselves do not contain any information regarding their

execution environment, but they are at the heart of every user-defined

function, all of which do contain some execution context. (The actual byte-

compiled code as a code object is one attribute belonging to a function).

4. Along with the code object, a function's attributes also consist of the

administrative support which a function requires, including its name,

documentation string, default arguments, and global namespace.

Frames

1. These are objects representing execution stack frames in Python.

2. Frame objects contain all the information the Python interpreter needs to

know during a runtime execution environment.

3. Some of its attributes include a link to the previous stack frame, the code

object (see above) that is being executed, dictionaries for the local and

global namespaces, and the current instruction.

4. Each function call results in a new frame object, and for each frame object,

a C stack frame is created as well. One place where you can access a

frame object is in a traceback object.

24

Tracebacks

When you make an error in Python, an exception is raised. If exceptions are not caught

or "handled," the interpreter exits with some diagnostic information similar to the output

shown below:

Traceback (innermost last): File "<stdin>", line N?, in ???

ErrorName: error reason

The traceback object is just a data item that holds the stack trace information for an

exception and is created when an exception occurs. If a handler is provided for an

exception, this handler is given access to the traceback object.

Slice Objects

Slice objects are created when using the Python extended slice syntax. This

extended syntax allows for different types of indexing. These various types of indexing

include stride indexing, multidimensional indexing, and indexing using the Ellipsis type.

The syntax for multi-dimensional indexing is

sequence[start1 : end1, start2 : end2], or using the ellipsis,

sequence[…, start1 : end1].

Slice objects can also be generated by the slice() built-in function. Extended

slice syntax is currently supported only in external third party modules such as the

NumPy module and JPython. Stride indexing for sequence types allows for a third slice

element that allows for "step"- like access with a syntax of

sequence[starting_index : ending_index : stride].

25

We will demonstrate an example of stride indexing using JPython here:

>>> foostr = 'abcde'

>>> foostr[::-1] output 'edcba'

>>> foostr[::-2] output 'eca'

>>> foolist = [123, 'xba', 342.23, 'abc']

>>> foolist[::-1] output ['abc', 342.23, 'xba', 123]

Ellipsis

Ellipsis objects are used in extended slice notations as demonstrated above.

These objects are used to represent the actual ellipses in the slice syntax (…). Like the

Null object, ellipsis objects also have a single name, Ellipsis, and has a Boolean true

value at all times.

Xranges

XRange objects are created by the built-in function xrange(), a sibling of the

range() built-in function and used when memory is limited and for when range()

generates an unusually large data set

Standard Type Operators

Value Comparison

Comparison operators are used to determine equality of two data values

between members of the same type. These comparison operators are supported for all

built-in types.

26

Comparisons yield true or false values, based on the validity of the comparison

expression. Python chooses to interpret these values as the plain integers 0 and 1 for

false and true, respectively, meaning that each comparison will result in one of those two

possible values

27

Object Identity Comparison

In addition to value comparisons, Python also supports the notion of directly comparing

objects themselves. Objects can be assigned to other variables (by reference). Because

each variable points to the same (shared) data object, any change effected through one

variable will change the object and hence be reflected through all references to the

same object.

NUMBERS:

Python has four numeric types:

1. regular or "plain" integers,

2. long integers,

3. floating point real numbers, and

4. complex numbers.

Numbers provide literal or scalar storage and direct access. Numbers are also an

immutable type, meaning that changing or updating its value results in a newly allocated

object. This activity is, of course, transparent to both the programmer and the user, so it

should not change the way the application is developed.

28

How to Create and Assign Numbers (Number Objects)

Creating numbers is as simple as assigning a value to a variable.

anInt = 1

1aLong = -9999999999999999L

How to Update Numbers

You can "update" an existing number by (re)assigning a variable to another

number. The new value can be related to its previous value or to a completely different

number altogether.

anInt = anInt + 1, aFloat = 2.718281828

How to Remove Numbers

Under normal circumstances, you do not really "remove" a number; you just

stop using it! If you really want to delete a reference to a number object, just use the del

statement. You can no longer use the variable name, once removed, unless you assign

it to a new object; otherwise, you will cause a NameError exception to occur.

del anInt

del aLong, aFloat, aComplex

29

Integers

Python has two types of integers. Plain integers are the generic vanilla (32-bit)

integers recognized on most systems today. Python also has a long integer size;

however, these far exceed the size provided by C longs. We will take a look at both

types of Python integers, followed by a description of operators and built-in functions

applicable only to Python integer types.

(Plain) Integers

Python's "plain" integers are the universal numeric type. Most machines (32-bit) running

Python will provide a range of -231 to 231-1, that is -2,147,483,648 to 2,147,483,647.

Here are some examples of Python integers:

0101 84 -237 0x80 017 -680 -0X92

Python integers are implemented as (signed) longs in C. Integers are normally

represented in base 10 decimal format, but they can also be specified in base eight or

base sixteen representation. Octal values have a "0" prefix, and hexadecimal values

have either "0x" or "0X" prefixes.

30

Long Integers

The major difference between the long integers in C or other compiled

languages and python these values are typically restricted to 32- or 64-bit sizes,

whereas Python long integers are limited only by the amount of (virtual) memory in your

machine. Long integers are a superset of integers and are useful when the range of

plain integers exceeds those of your application, meaning less than -231 or greater than

231-1. Use of long integers is denoted by an upper- or lowercase (L) or (l), appended to

the integer's numeric value. Values can be expressed in decimal, octal, or hexadecimal.

The following are examples of long integers:

16384L -0x4E8L 017L -2147483648l 052144364L

Floating Point Real Numbers

Floats in Python are implemented as C doubles, double precision floating point

real numbers, values which can be represented in straight forward decimal or scientific

notations. These 8-byte (64-bit) values conform to the IEEE 754 definition (52M/11E/1S)

where 52 bits are allocated to the mantissa, 11 bits to the exponent (this gives you about

± 10308.25 in range), and the final bit to the sign. However, the actual amount of

precision you will receive (along with the range and overflow handling) depends

completely on the architecture of the machine as well as the implementation of the

compiler which built your Python interpreter.

31

Floating point values are denoted by a decimal point (.) in the appropriate place and an

optional "e" suffix representing scientific notation. We can use either lowercase (e) or

uppercase (E). Positive (+) or negative (-) signs between the "e" and the exponent

indicate the sign of the exponent. Absence of such a sign indicates a positive exponent.

Here are some floating point values:

0.0 -777. 1.6 -5.555567119 96e3 * 1.0

4.3e25 9.384e-23 -2.172818 float(12) 1.000000001

3.1416 4.2E-10 -90. 6.022e23 -1.609E-19

Complex Numbers

A long time ago, mathematicians were stumped by the following equation:

X2=-1 The reason for this is because any real number (positive or

negative) multiplied by itself results in a positive number. How can you multiply any

number with itself to get a negative number? No such real number exists. So in the

eighteenth century, mathematicians invented something called an imaginary number i

(or j— depending what math book you are reading) such that: j=√-1 Basically a new

branch of mathematics was created around this special number (or concept), and now

imaginary numbers are used in numerical and mathematical applications. Combining a

real number with an imaginary number forms a single entity known as a complex

number. A complex number is any ordered pair of floating point real numbers (x, y)

denoted by x + y j where x is the real part and y is the imaginary part of a complex

number.

32

Here are some facts about Python's support of complex numbers:

1. Imaginary numbers by themselves are not supported in Python

2. Complex numbers are made up of real and imaginary parts

3. Syntax for a complex number: real+imag j

4. Both real and imaginary components are floating point values

5. Imaginary part is suffixed with letter "J" lowercase (j) or upper (J)

The following are examples of complex numbers:

64.375+1j 4.23-8.5j 0.23-8.55j 1.23e-045+6.7e+089j

6.23+1.5j -1.23-875J 0+1j9.80665-8. 31441J -.0224+0j

Complex Number Built-in Attributes

Complex numbers are one example of objects with data attributes . The data

attributes are the real and imaginary components of the complex number object they

belong to. Complex numbers also have a method attribute which can be invoked,

returning the complex conjugate of the object.

33

>>> aComplex = -8.333-1.47j

>>> aComplex

(-8.333-1.47j)

>>> aComplex.real

-8.333

>>> aComplex.imag

-1.47

>>> aComplex.conjugate()

(-8.333+1.47j)

Built-in Functions

Standard Type Functions

we introduced the cmp(), str(), and type() built-in functions that apply for all

standard types. For numbers, these functions will compare two numbers, convert

numbers into strings, and tell you a number's type, respectively. Here are some

examples of using these functions:

>>> cmp(-6, 2)] o/p -1

>>> cmp(-4.333333, -2.718281828) o/p -1

>>> cmp(0xFF, 255) o/p 0

>>> str(0xFF) o/p 5'

34

Operational

Python has five operational built-in functions for numeric types: abs(), coerce(),

divmod(), pow(), and round().

Abs()

abs() returns the absolute value of the given argument. If the argument is a

complex number, then math.sqrt(num. real2 + num. imag2) is returned. Here are some

examples of using the abs() built-in function:

>>> abs(-1) o/p 1

>>> abs(10.) o/p 10.0

Coercion

The coerce() function, although it technically is a numeric type conversion

function, does not convert to a specific type and acts more like an operator, hence our

placement of it in our operational built-ins section. The coerce() function is a way for the

programmer to explicitly coerce a pair of numbers rather than letting the interpreter do it.

This feature is particularly useful when defining operations for newly-created numeric

class types. coerce() just returns a tuple containing the converted pair of numbers.

>>> coerce(1, 134L) o/p (1L, 134L)

35

Divmod

The divmod() built-in function combines division and modulus operations into a

single function call that returns the pair (quotient, remainder) as a tuple. The values

returned are the same as those given for the standalone division and modulus operators

for integer types. For floats, the quotient returned is math.floor(num1/num2) and for

complex numbers, the quotient is math.floor((num1/num2).real).

>>> divmod(10,3) o/p (3, 1)

are differences other than the fact that one is an operator and the other is a built-in

function.

Pow()

The ** operator did not appear until Python 1.5, and the pow() built-in takes an

optional third parameter, a modulus argument. If provided, pow() will perform the

exponentiation first, then return the result modulo the third argument. This feature is

used for cryptographic applications and has better performance than pow(x,y) % z since

the latter performs the calculations in Python rather than in C like pow(x, y, z).

>>> pow(2,5) o/p 32

>>> pow(5,2) o/p 25

36

Storage Model

1. The first way we can categorize the types is by how many objects

can be stored in an object of this type.

2. Python's types, as well as types from most other languages, can hold

either single or multiple values.

3. A type which holds a single object we will call literal or scalar

storage, and those which can hold multiple objects we will

refer to as container storage.

4. Container types bring up the additional issue of whether different

types of objects can be stored. All of Python's container types can

hold objects of different types.

37

Update Model

Another way of categorizing the standard types is by asking the question,

"Once created, can objects be changed or their values updated?" When we

introduced Python types early on, we indicated that certain types allow their

values to be updated and others do not. Mutable objects are those whose

values can be changed, and immutable objects are those whose values cannot

be changed. Table 4.7 illustrates which types support updates and which do

not.

38

Access Model

Although the previous two models of categorizing the types are useful when

being introduced to Python, they are not the primary models for differentiating

the types. For that purpose, we use the access model. By this, we mean, how

do we access the values of our stored data? There are three categories under

the access model: direct, sequence, and mapping. The different access models

and which types fall into each respective category are given in Table 4.8.

39

Round()

The round() built-in function has a syntax of round (flt,ndig=0). It normally

rounds a floating point number to the nearest integral number and returns that result

(still) as a float. When the optional third ndig option is given, round() will round the

argument to the specific number of decimal places.

>>> round(3) o/p 3.0

>>> round(3.45) o/p 3.0

SEQUENCES:

Sequence types all share the same access model: ordered set with sequentially-indexed

offsets to get to each element. Multiple elements may be achieved by using the slice

operators which we will explore in this chapter. The numbering scheme used starts from

zero (0) and ends with one less the length of the sequence—the reason for this is

because we began at 0. Figure6-1 illustrates how sequence items are stored. Python's

powerful sequence types are strings, lists, and tuples.

40

Operators

A list of all the operators applicable to all sequence types is given below. The operators

appear in hierarchical order from highest to lowest with the levels alternating between

shaded and unshaded.

Membership (in, not in)

Membership test operators are used to determine whether an element is in or is a

member of a sequence. For strings, this test is whether a character is in a string, and for

lists and tuples, it is whether an object is an element of those sequences. The in and

not in operators are Boolean in nature; they return the integer one if the membership is

confirmed and zero otherwise. The syntax for using the membership operators is as

follows:

obj [not] in sequence

41

Concatenation (+)

This operation allows us to take one sequence and join it with another

sequence of the same type. The syntax for using the concatenation operator is as

follows:

sequence1 + sequence2

The resulting expression is a new sequence which contains the combined

contents of sequences

sequence1and sequence2.

Repetition (*)

The repetition operator is useful when consecutive copies of sequence

elements are desired. The syntax for using the membership operators is as follows:

sequence * copies_int

The number of copies, copies_int, must be a plain integer. It cannot even be a long. As

with the concatenation operator, the object returned is newly allocated to hold the

contents of the multiplyreplicated objects.

Slices ([], [:])

Sequences are structured data types whose elements are placed sequentially in an

ordered manner. This format allows for individual element access by index offset or by

an index range of indices to "grab" groups of sequential elements in a sequence. This

type of access is called slicing, and the slicing operators allow us to perform such

access. The syntax for accessing an individual element is:

sequence[index]

42

sequence is the name of the sequence and index is the offset into the sequence where

the desired element is located. Index values are either positive, ranging from 0 to the

length of the sequence less one, i.e., 0 <= index <= len(sequence) -1, or negative,

ranging from -1 to the negative length of the sequence, - len(sequence), i.e., -

len(sequence) <= index <= -1. The difference between the positive and negative indexes

is that positive indexes start from the beginning of the sequences and negative indexes

begin from the end. Accessing a group of elements is similar. Starting and ending

indexes may be given, separated by a colon (:). The syntax for accessing a group of

elements is:

sequence [[starting_index]: [ending_index]]

Using this syntax, we can obtain a "slice" of elements in sequence from the

starting_index up to but not including the element at the ending_index index. Both

starting_index and ending_index are optional, and if not provided, the slice will go from

the beginning of the sequence or until the end of the sequence, respectively.

Built-in Functions

Conversion

The list(), str(), and tuple() built-in functions are used to convert from any sequence type

to another.

43

We use the term "convert" loosely. It does not actually convert the argument object into

another type; recall that once Python objects are created, we cannot change their

identity or their type. Rather, these functions just create a new sequence of the

requested type, populate it with the members of the argument object, and pass that new

sequence back as the return value. The str() function is most popular when converting

an object into something printable and works with other types of objects, not just

sequences. The list() and tuple() functions are useful to convert from one to another

(lists to tuples and vice versa). However, although those functions are applicable for

strings as well since strings are sequences, using tuple() and list() to turn strings into

tuples or lists is not common practice.

Operational

Python provides the following operational built-in functions for sequence types.

Sequence Type Operational Built-in Functions

44

Strings:

Strings are amongst the most popular types in Python. We can create them simply by

enclosing characters in quotes. Python treats single quotes the same as double quotes.

This contrasts with most other scripting languages, which use single quotes for literal

strings and double quotes to allow escaping of characters. Python uses the "raw string"

operator to create literal quotes, so no differentiation is necessary. Python does not have

a character type; this is probably another reason why single and double quotes are the

same. Nearly every Python application uses strings in one form or another. Strings are a

literal or scalar type, meaning they are treated by the interpreter as a singular value and

are not containers which hold other Python objects. Strings are immutable, meaning that

changing an element of a string requires creating a new string. Strings are made up of

individual characters, and such elements of strings may be accessed sequentially via

slicing.

How to Create and Assign Strings

Creating strings is as simple as assigning a value to a variable:

>>> aString = 'Hello World!'

>>> print aString

Hello World!

How to Access Values(Characters and Substrings) in Strings

Python does not support a character type; these are treated as strings of length one,

thus also considered a substring. To access substrings, use the square brackets for

slicing along with the index or indices to obtain your substring:

45

>>> aString = 'Hello World!'

>>> aString[0]

'H'

>>> aString[1:5]

'ello'

>>> aString[6:]

'World!'

How to Update Strings

You can "update" an existing string by (re)assigning a variable to another string. The

new value can be related to its previous value or to a completely different string

altogether.

>>> aString = aString[:6] + 'Python!'

>>> aString

'Hello Python!'

>>> aString = 'different string altogether'

>>> aString

'different string altogether'

Like numbers, strings are not mutable, so you cannot change an existing string without

creating a new one from scratch. That means that you cannot update individual

characters or substrings in a string. However, as you can see above, there is nothing

wrong with piecing together part of your old string and assigning it to a new string.

46

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual

characters from an existing string. What you can do, however, is to empty the string, or

to put together another string which drops the pieces you were not interested in. Let us

say you want to remove one letter from "Hello World!"… the (lowercase) letter "l," for

example:

>>> aString = 'Hello World!'

>>> aString = aString[:3] + aString[4:]

>>> aString

'Helo World!'

To clear or remove a string, you assign an empty string or use the del statement,

respectively:

>>> aString = ''

>>> aString

''

>>> del aString

In most applications, strings do not need to be explicitly deleted. Rather, the code

defining the string eventually terminates, and the string is automatically garbage-

collected.

47

Strings and Operators

Standard Type Operators

We introduced a number of operators that apply to most objects, including the standard

types. We will take a look at how some of those apply to strings. For a brief introduction,

here are a few examples using strings:

>>> str1 = 'abc'

>>> str2 = 'lmn'

>>> str3 = 'xyz'

>>> str1 < str2

1

>>> str2 != str3

1

>>> (str1 < str3) and (str2 == 'xyz')

0

When using the value comparison operators, strings are compared lexicographically

(ASCII value order).

Sequence Operators

Slices ([] and [:])

We will apply that knowledge to strings in this section. In particular, we will look

at:

Counting forward

Counting backward

Default/missing indexes

48

For the following examples, we use the single string 'abcd'. Provided in the figure is a list

of positive and negative indexes that indicate the position in which each character is

located within the string itself. Using the length operator, we can confirm that its length is

4:

>>> string = 'abcd'

>>> len(string)

4

When counting forward, indexes start at 0 to the left and end at one less than the length

of the string (because we started from zero). In our example, the final index of our string

is final index = len(string) – 1 = 4 – 1 = 3

We can access any substring within this range. The slice operator with a single

argument will give us a single character, and the slice operator with a range, i.e., using a

colon (:), will give us multiple consecutive characters. Again, for any ranges [start:end],

we will get all characters starting at offset start up to, but not including, the character at

end. In other words, for all characters x in the range [start : end], start<= x < end.

>>> string[0]

'a'

>>> string[1:3]

'bc'

>>> string[2:4]

'cd'

>>> string[4]

Traceback (innermost last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

49

Any index outside our valid index range (in our example, 0 to 3) results in an error.

Above, our access of string[2:4] was valid because that returns characters at indexes 2

and 3, i.e., 'c' and 'd', but a direct access to the character at index 4 was invalid. When

counting backward, we start at index -1 and move toward the beginning of the string,

ending at negative value of the length of the string. The final index (the first character) is

located at:

final index = -len(string)

= -4

>>> string[-1]

'd'

>>> string[-3:-1]

'bc'

>>> string[-4]

'a'

When either a starting or an ending index is missing, they default to the beginning or end

of the string, respectively.

>>> string[2:]

'cd'

>>> string[1:]

'bcd'

>>> string[:-1]

'abc'

>>> string[:]

'abcd'

50

Membership (in, not in)

The membership question asks whether a character (string of length one) appears in a

string. A one is returned if that character appears in the string and zero otherwise. Note

that the membership operation is not used to determine if a substring is within a string.

Such functionality can be accomplished by using the string methods or string module

functions find() or index() (and their brethren rfind() and rindex()). Here are a few more

examples of strings and the membership operators.

>>> 'c' in 'abcd'

1

>>> 'n' in 'abcd'

0

>>> 'n' not in 'abcd'

1

Concatenation (+)

We can use the concatenation operator to create new strings from existing ones. We

have already seen the concatenation operator. Here are a few more examples:

>>> 'Spanish' + 'Inquisition'

'SpanishInquisition'

>>> s = 'Spanish' + ' ' + 'Inquisition' + ' Made Easy'

>>> s

Spanish Inquisition Made Easy'

51

Repetition (*)

The repetition operator creates new strings, concatenating multiple copies of the same

string to accomplish its functionality:

>>> 'Ni!' * 3

'Ni!Ni!Ni!'

>>>

>>> print '-' * 20, 'Hello World!', '-' * 20

-------------------- Hello World! --------------------

String-only Operators

Format Operator (%)

One of Python's coolest features is the string format operator. This operator is unique to

strings and makes up for the pack of having functions from C's printf() family. In fact, it

even uses the same symbol, the percent sign (%), and supports all the printf() formatting

codes. The syntax for using the format operator is as follows:

format_string % (arguments_to_convert)

The format_string on the left-hand side is what you would typically find as the first

argument to printf(), the format string with any of the embedded % codes.The

arguments_to_convert parameter matches the remaining arguments you would send to

printf(), namely the set of variables to convert and display.

52

53

Python supports two formats for the input arguments. The first is a tuple, which is

basically the set of arguments to convert, just like for C's printf(). The second format

which Python supports is a dictionary. A dictionary is basically a set of hashed key-value

pairs. The keys are requested in the format_string, and the corresponding values are

provided when the string is formatted. Converted strings can either be used in

conjunction with the print statement to display out to the user or saved into a new string

for future processing or displaying to a graphical user interface. Other supported

symbols and functionality are

54

As with C's printf(), the asterisk symbol (*) may be used to dynamically indicate the width

and precision via a value in argument tuple. Before we get to our examples, one more

word of caution: long integers are more than likely too large for conversion to standard

integers, so we recommend using exponential notation to get them to fit. Here are some

examples using the string format operator:

Hexadecimal Output

>>> "%x" % 108 >>> "%X" % 108

'6c' '6C'

>>>

Floating Point and Exponential Notation Output

>>>

>>> '%f' % 1234.567890

'1234.567890'

>>>

>>> '%.2f' % 1234.567890

'1234.57'

>>>

Integer and String Output

>>> "%+d" % 4

'+4'

>>>

>>> "%+d" % -4

'-4'

>>>

>>> "we are at %d%%" % 100

55

Lists:

Like strings, lists provide sequential storage through an index offset and access to single

or consecutive elements through slices. However, the comparisons usually end there. Strings

consist only of characters and are immutable (cannot change individual elements) while lists

are flexible container objects which hold an arbitrary number of Python objects. Creating lists

is simple; adding to lists is easy, too, as we see in the following examples. The objects that

you can place in a list can include standard types and objects as well as user-defined ones.

Lists can contain different types of objects and are more flexible than an array of C structs or

Python arrays (available through the external array module) because arrays are restricted to

containing objects of a single type. Lists can be populated, empty, sorted, and reversed. Lists

can be grown and shrunk. They can be taken apart and put together with other lists.

Individual or multiple items can be inserted, updated, or removed at will. Tuples share many

of the same characteristics of lists and although we have a separate section on tuples, many

of the examples and list functions are applicable to tuples as well. The key difference is that

tuples are immutable, i.e., read-only, so any operators or functions which allow updating lists,

such as using the slice operator on the left-hand side of an assignment, will not be valid for

tuples.

How to Create and Assign Lists

Creating lists is as simple as assigning a value to a variable. You handcraft a list (empty

or with elements) and perform the assignment. Lists are delimited by surrounding square

brackets

([]).

>>> aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]

>>> anotherList = [None, 'something to see here']

>>> print aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

56

How to Access Values in Lists

Slicing works similar to strings; use the square bracket slice operator ([]) along with

the index or indices.

>>> aList[0]

123

>>> aList[1:4]

['abc', 4.56, ['inner', 'list']]

How to Update Lists

You can update single or multiple elements of lists by giving the slice on the left-hand

side of the assignment operator, and you can add to elements in a list with the append()

method:

>>> aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

>>> aList.append(float replacer)

>>>aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j),float replacer]

How to Remove List Elements and Lists

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know.

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>> del aList[1]

57

>>> aList

[123, 'float replacer', ['inner', 'list'], (7-9j)]

You can also use the pop() method to remove and return a specific object from a list.

Normally, removing an entire list is not something application programmers do. Rather,

they tend to let it go out of scope (i.e., program termination, function call completion,

etc.) and be garbagecollected, but if they do want to explicitly remove an entire list, use

the del statement: del aList

Sequence Type Operators

Slices ([] and [:])

Slicing with lists is very similar to strings, but rather than using individual characters or

substrings, slices of lists pull out an object or a group of objects which are elements of

the list operated on. Focusing specifically on lists, we make the following definitions:

>>> num_list = [43, -1.23, -2, 6.19e5]

>>> str_list = ['jack', 'jumped', 'over', 'candlestick']

>>> mixup_list = [4.0, [1, 'x'], 'beef', -1.9+6j]

Slicing operators obey the same rules regarding positive and negative indexes, starting

and ending indexes, as well as missing indexes, which default to the beginning or to the

end of a sequence.

Membership (in, not in)

With strings, the membership operator determined whether a single character is a

member of a string. With lists (and tuples), we can check whether an object is a member

of a list (or tuple).

58

>>> mixup_list

[4.0, [1, 'x'], 'beef', (-1.9+6j)]

>>>

>>> 'beef' in mixup_list

1

Concatenation (+)

The concatenation operator allows us to join multiple lists together. Note in the examples

below that there is a restriction of concatenating like objects. In other words, you can

concatenate only objects of the same type. You cannot concatenate two different types

even if both are sequences.

>>> num_list = [43, -1.23, -2, 6.19e5]

>>> str_list = ['jack', 'jumped', 'over', 'candlestick']

>>> str_list + num_list

['jack', 'jumped', 'over', 'candlestick', 'park', 43, -1.23, -2, 619000.0]

Repetition (*)

Use of the repetition operator may make more sense with strings, but as a sequence

type, lists and tuples can also benefit from this operation, if needed:

>>> num_list * 2

[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0]

>>>

>>> num_list * 3

[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0, 43, -1.23, -2,

619000.0]

Other functions are Cmp, len, max, and min.

59

Cmp() Function

>>> str1 = 'abc'

>>> str2 = 'lmn'

>>> str3 = 'xyz'

>>> cmp(str1, str2)

-11

len() Function

>>> str1 = 'abc'

>>> len(str1)

3

max() and min() Function

max() and min() did not have a significant amount of usage for strings since all they did

was to find the "largest" and "smallest" characters (lexicographically) in the string list()

and tuple() The list() and tuple() methods take sequence types and convert them to lists

and tuples, respectively. Although strings are also sequence types, they are not

commonly used with list() and tuple(). These built-in functions are used more often to

convert from one type to the other., i.e., when you have a tuple that you need to make a

list (so that you can modify its elements) and vice versa.

60

61

>>> a = [10,20,30,40,50]

>>> a

[10, 20, 30, 40, 50]

>>> a.append(60)

>>> a

[10, 20, 30, 40, 50, 60]

>>> a.append(70)

>>> a

[10, 20, 30, 40, 50, 60, 70]

>>> a.append(70)

>>> a

[10, 20, 30, 40, 50, 60, 70, 70]

>>> a.count(70)

2

>>> a.index(40)

3

>>> a.insert(2,1000)

>>> a

[10, 20, 1000, 30, 40, 50, 60, 70, 70]

>>> a.pop()

70

>>> a

[10, 20, 1000, 30, 40, 50, 60, 70]

>>> a.remove(20)

>>> a

[10, 1000, 30, 40, 50, 60, 70]

>>> a.reverse()

>>> a

[70, 60, 50, 40, 30, 1000, 10]

>>> a.sort()

>>> a

[10, 30, 40, 50, 60, 70, 1000]

>>>

62

Tuples:

Tuples are another container type extremely similar in nature to lists. The only visible

difference between tuples and lists is that tuples use parentheses and lists use square

brackets. Functionally there is a more significant difference, and that is the fact that

tuples are immutable. Our usual modus operandi is to present the operators and built-in

functions for the more general objects, followed by those for sequences and conclude

with those applicable only for tuples, but because tuples share so many characteristics

with lists, we would be duplicating much of our description from the previous section.

Rather than providing much repeated information, we will differentiate tuples from lists

as they apply to each set of operators and functionality, then discuss immutability and

other features unique to tuples.

How to Create and Assign Tuples

Creating and assigning lists are practically identical to lists, with the exception of empty

tuples. These require a trailing comma (,) enclosed in the tuple delimiting parentheses (

()).

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

>>> anotherTuple = (None, 'something to see here')

>>> print aTuple

(123, 'abc', 4.56, ['inner', 'tuple'], (7-9j))

63

How to Access Values in Tuples

Slicing works similar to lists: Use the square bracket slice operator ([]) along with the

index or indices.

>>> aTuple>>> aList[1:4]

('abc', 4.56, ['inner', 'tuple'])

>>> aTuple[:3]

(123, 'abc', 4.56)

>>> aTuple[3][1] 'tuple'

How to Update Tuples

Like numbers and strings, tuples are immutable which means you cannot update them

or change values of tuple elements. In Sections 6.2 and 6.3.2, we were able to take

portions of an existing string to create a new string. The same applies for tuples.

>>> aTuple = aTuple[0], aTuple[1], aTuple[-1]

>>> aTuple

(123, 'abc', (7-9j))

>>> tup1 = (12, 34.56)

>>> tup2 = ('abc', 'xyz')

>>> tup3 = tup1 + tup2

>>> tup3

(12, 34.56, 'abc', 'xyz')

64

How to Remove Tuple Elements and Tuples

Removing individual tuple elements is not possible. There is, of course, nothing wrong

with putting together another tuple with the undesired elements discarded. To explicitly

remove an entire list, just use the del statement:

del aTuple

Tuple Operators and Built-in Functions

Standard and Sequence TypeOperators and Built-in Functions

Object and sequence operators and built-in functions act the exact same way toward

tuples as they do with lists. You can still take slices of tuples, concatenate and make

multiple copies of tuples, validate membership, and compare tuples:

Creation, Repetition, Concatenation

>>> t = (['xyz', 123], 23, -103.4)

>>> t

(['xyz', 123], 23, -103.4)

>>> t * 2

(['xyz', 123], 23, -103.4, ['xyz', 123], 23, -103.4)

>>> t = t + ('free', 'easy')

>>> t

(['xyz', 123], 23, -103.4, 'free', 'easy')

65

Membership, Slicing

>>> 23 in t

1

>>> 123 in t

0

>>> t[0][1]

123

>>> t[1:]

(23, -103.4, 'free', 'easy')

Built-in Functions

>>> str(t)

(['xyz', 123], 23, -103.4, 'free', 'easy')

>>> len(t)

5

>>> max(t)

'free'

>>> min(t)

-103.4

>>> cmp(t, (['xyz', 123], 23, -103.4, 'free',

'easy'))

0

>>> list(t)

[['xyz', 123], 23, -103.4, 'free', 'easy']

Operators

>>> (4, 2) < (3, 5)

0

>>> (2, 4) < (3, -1)

1

>>> (2, 4) == (3, -1)

0

>>> (2, 4) == (2, 4)

1

66

4.4.4 Dictionaries:

Dictionaries are Python's mapping or hashing type. A dictionary is mutable and is

another container type that can store any number of Python objects, including other

container types. Python dictionaries are implemented as resizable hash tables.

How to Create and Assign Dictionaries

Creating dictionaries simply involves assigning a dictionary to a variable, regardless of

whether the dictionary has elements or not:

>>> dict1 = {}

>>> dict2 = {'name': 'earth', 'port': 80}

>>> dict1, dict2

({}, {'port': 80, 'name': 'earth'})

How to Access Values in Dictionaries

To access dictionary elements, you use the familiar square brackets along with the key

to obtain its value:

>>> dict2['name']

'earth'

>>>

>>> print 'host %s is running on port %d' % \

… (dict2['name'], dict2['port'])

host earth is running on port 80

67

Dictionary dict1 is empty while dict2 has two data items. The keys in dict2 are 'name'

and 'port', and their associated value items are 'earth' and 80, respectively. Access to the

value is through the key, as you can see from the explicit access to the 'name' key. If we

attempt to access a data item with a key which is not part of the dictionary, we get an

error:

>>> dict2['server']

Traceback (innermost last):

File "<stdin>", line 1, in ?

KeyError: server

In this example, we tried to access a value with the key 'server' which, as you know,

does not exist from the code above. The best way to check if a dictionary has a specific

key is to use the dictionary's has_key() method. We will introduce all of a dictionary's

methods below. The Boolean has_key() method will return a 1 if a dictionary has that

key and 0 otherwise.

>>> dict2.has_key('server')

0

>>> dict2.has_key('name')

1

>>> dict2['name']

'earth'

68

How to Update Dictionaries

You can update a dictionary by adding a new entry or element (i.e., a key-value pair),

modifying an existing entry, or deleting an existing entry (see below for more details on

removing an entry).

>>> dict2['name'] = 'venus' # update existing entry

>>> dict2['port'] = 6969 # update existing entry

>>> dict2['arch'] = 'sunos5' # add new entry

>>>

>>> print 'host %(name)s is running on port %(port)d' % dict2

host venus is running on port 6969

If the key does exist, then its previous value will be overridden by its new value. The

print statement above illustrates an alternative way of using the string format operator (

%), specific to dictionaries. Using the dictionary argument, you can shorten the print

request somewhat because naming of the dictionary occurs only once, as opposed to

occurring for each element using a tuple argument. You may also add the contents of an

entire dictionary to another dictionary by using the update() built-in method.

69

How to Remove Dictionary Elements and Dictionaries

Removing an entire dictionary is not a typical operation. Generally, you either remove

individual dictionary elements or clear the entire contents of a dictionary. However, if you

really want to "remove" an entire dictionary, use the del statement. Here are some

deletion examples for dictionaries and dictionary elements:

del dict1['name'] # remove entry with key 'name'

dict1.clear() # remove all entries in dict1

del dict1 # delete entire dictionary

Operators

Dictionaries do not support sequence operations such as concatenation and repetition,

although an update() built-in method exists that populates one dictionary with the

contents of another. Dictionaries do not have a "membership" operator either, but the

has_key() built-in method basically performs the same task.

Standard Type Operators

Dictionaries will work with all of the standard type operators.

>>> dict4 = { 'abc': 123 } >>> dict5 = { 'abc': 456 }

>>> dict6 = { 'abc': 123, 98.6: 37 } >>> dict7 = { 'xyz': 123 }

>>> dict4 < dict5 o/p 1 >>> (dict4 < dict6) and (dict4 < dict7) o/p 1

>>> (dict5 < dict6) and (dict5 < dict7) o/p 1 >>> dict6 < dict7 o/p 0

70

How are all these comparisons performed? Like lists and tuples, the process is a bit

more complex than it is for numbers and strings.

Dictionary Key-lookup Operator ([])

The only operator specific to dictionaries is the key-lookup operator, which works very

similar to the single element slice operator for sequence types. For sequence types, an

index offset is the sole argument or subscript to access a single element of a sequence.

For a dictionary, lookups are by key, so that is the argument rather than an index. The

keylookup operator is used for both assigning values to and retrieving values from a

dictionary:

dict[k] = v # set value 'v' in dictionary with key 'k'

dict[k] # lookup value in dictionary with key 'k'

71

Built-in Functions

Standard Type Functions [type(), str(), and cmp()]

The type() built-in function, when operated on a dictionary, reveals an object of the

dictionary type. The str() built-in function will produce a printable string representation of

a dictionary. These are fairly straightfoward.

In each of the last three chapters, we showed how the cmp() built-in function worked

with numbers, strings, lists, and tuples. So how about dictionaries? Comparisons of

dictionaries are based on an algorithm which starts with sizes first, then keys, and finally

values. In our example below, we create two dictionaries and compare them, then slowly

modify the dictionaries to show how these changes affect their comparisons:

>>> dict1 = {}

>>> dict2 = { 'host': 'earth', 'port': 80 }

>>> cmp(dict1, dict2)

-1

>>> dict1['host'] = 'earth'

>>> cmp(dict1, dict2)

-1

In the first comparison, dict1 is deemed smaller because dict2 has more elements (2

items vs. 0 items). After adding one element to dict1, it is still smaller (2 vs. 1), even if

the item added is also in dict2.

>>> dict1['port'] = 8080

72

>>> cmp(dict1, dict2)

1

>>> dict1['port'] = 80

>>> cmp(dict1, dict2)

0

After we add the second element to dict1, both dictionaries have the same size, so their

keys are then compared. At this juncture, both sets of keys match, so comparison

proceeds to checking their values. The values for the 'host' keys are the same, but when

we get to the 'port' key, dict2 is deemed larger because its value is greater than that of

dict1's 'port' key (8080 vs. 80). When resetting dict2's 'port' key to the same value as

dict1's 'port' key, then both dictionaries form equals: They have the same size, their keys

match, and so do their values, hence the reason that 0 is returned by cmp().

>>> dict1['prot'] = 'tcp'

>>> cmp(dict1, dict2)

1

>>> dict2['prot'] = 'udp'

>>> cmp(dict1, dict2)

-1

As soon as an element is added to one of the dictionaries, it immediately becomes the

"larger one," as in this case with dict1. Adding another key-value pair to dict2 can tip the

scales again, as both dictionaries' sizes match and comparison progresses to checking

keys and values.

73

>>> cdict = { 'fruits':1 }

>>> ddict = { 'fruits':1 }

>>> cmp(cdict, ddict)

0

>>> cdict['oranges'] = 0

>>> ddict['apples'] = 0

>>> cmp(cdict, ddict)

14

Our final example reminds as that cmp() may return values other than -1, 0, or 1. The

algorithm pursues comparisons in the zzfollowing order:

(1) Compares Dictionary Sizes

If the dictionary lengths are different, then for cmp(dict1, dict2), cmp() will return

a positive number if dict1 is longer and a negative number of dict2 is longer. In other

words, the dictionary with more keys is greater, i.e.,

len(dict1) > len(dict2) ? dict1 > dict2

(2) Compares Dictionary Keys

If both dictionaries are the same size, then their keys are compared; the order

in which the keys are checked is the same order as returned by the keys() method. (It is

important to note here that keys which are the same will map to the same locations in

the hash table. This keeps key-checking consistent.) At the point where keys from both

do not match, they are directly compared and cmp() will return a positive number if the

first differing key for dict1 is greater than the first differing key of dict2.

74

(3) Compares Dictionary Values

If both dictionary lengths are the same and the keys match exactly, the values

for each key in both dictionaries are compared. Once the first key with non-matching

values is found, those values are compared directly. Then cmp() will return a positive

number if, using the same key, the value in dict1 is greater than that of the value in dict2.

(4) Exact Match

If we have reached this point, i.e., the dictionaries have the same length, the same keys,

and the same values for each key, then the dictionaries are an exact match and 0 is

returned.

Mapping Type Function [len()]

Similar to the sequence type built-in function, the mapping type len() built-in returns the

total number of items, that is, key-value pairs, in a dictionary:

>>> dict2 = { 'name': 'earth', 'port': 80 }

>>> dict2

{'port': 80, 'name': 'earth'}

>>> len(dict2)

2

We mentioned earlier that dictionary items are unordered. We can see that above, when

referencing dict2, the items are listed in reverse order from which they were entered into

the dictionary.

75

Built-in Methods

>>> dict2 = { 'name': 'earth', 'port': 80 }

>>> dict2.has_key('name')

1

>>> dict2['name']

'earth'

>>> dict2.has_key('number')

0

76

>>> dict2.keys()

['port', 'name']

>>> dict2.values()

[80, 'earth']

>>> dict2.items()

[('port', 80), ('name', 'earth')]

>>> for eachKey in dict2.keys():

… print 'dict2 key', eachKey, 'has value',

dict2[eachKey]

…

dict2 key port has value 80

dict2 key name has value earth

>>> dict2Keys = dict2.keys()

>>> dict2Keys.sort()

>>> for eachKey in dict2Keys:

… print 'dict2 key', eachKey, 'has value',

dict2[eachKey]

…

dict2 key name has value earth

dict2 key port has value 80

>>> dict2= { 'host':'earth', 'port':80 }

>>> dict3= { 'host':'venus', 'server':'http' }

>>> dict2.update(dict3)

>>> dict2

{'server': 'http', 'port': 80, 'host': 'venus'}

>>> dict3.clear()

>>> dict3

{}

>>> dict4 = dict2.copy()

>>> dict4

{'server': 'http', 'port': 80, 'host': 'venus'}

>>> dict4.get('host')

'venus'

>>> dict4.get('xxx')

>>> type(dict4.get('xxx'))

<type 'None'>

>>> dict4.get('xxx', 'no such key')

'no such key'

77

Conditionals and Loops

78

The primary focus of this chapter are Python's conditional and looping statements, and

all their related components. We will take a close look at if, while, for, and their friends

else, elif, break, continue, and pass.

Simple if statement

The if statement for Python will seem amazingly familiar; it is made up of three

main components: the keyword itself, an expression which is tested for its truth value,

and a code suite to execute if the expression evaluates to non-zero or true. The syntax

for an if statement:

If expression:

expr_true_suite

The suite of the if clause, expr_true_suite, will be executed only if the above conditional

expression results in a Boolean true value. Otherwise, execution resumes at the next

statement following the suite.

a = int(raw_input("Enter the A Value"))

b = int(raw_input("Enter the B Value"))

if(a>b):

print "A is Big"

79

Nested if….else Statements

a = int(raw_input("Enter the A Value"))

b = int(raw_input("Enter the B Value"))

c = int(raw_input("Enter the C Value"))

if(a>b):

if(a>c):

print "A is Big"

else:

print "C is Big"

else:

if(b>c):

print "B is Big"

else:

print "C is Big"

if….else Statements

a = int(raw_input("Enter the A Value"))

b = int(raw_input("Enter the B Value"))

if(a>b):

print "A is Big"

else:

print "B is Big"

80

Multiple Condition in

if….else Statements

a = int(raw_input("Enter the A Value"))

b = int(raw_input("Enter the B Value"))

c = int(raw_input("Enter the C Value"))

if(a>b and a>c):

print "A is Big"

else:

if(b>c):

print "B is Big"

else:

print "C is Big"

elif Statements

mark1 = int(raw_input("Enter the Mark1"))

mark2 = int(raw_input("Enter the Mark2"))

mark3 = int(raw_input("Enter the Mark3"))

total = mark1 + mark2 + mark3

average = total / 3

if(mark1>=50 and mark2>=50 and

mark3>=50):

result = "Pass"

else:

result = "Fail"

if(mark1>=50 and mark2>=50 and

mark3>=50):

if(average>=80):

class1 = "First Class with Distinction"

elif(average>=60 and average<80):

class1 = "First Class"

elif(average>=50 and average<60):

class1 = "Second Class"

else:

class1 = "No Class"

print "The Mark1 is:",mark1

print "The Mark2 is:",mark2

print "The Mark3 is:",mark3

print "The Total Value is:",total

print "The Average Value is:",average

print "The Student Result is:",result

print "The Student Class is:",class1

81

while Statement
Python's while is the first looping statement we will look at in this chapter. In fact, it is a

conditional looping statement. In comparison with an if statement where a true

expression will result in a single execution of the if clause suite, the suite in a while

clause will be executed continuously in a loop until that condition is no longer satisfied.

General Syntax

while expression:

suite_to_repeat

The suite_to_repeat clause of the while loop will be executed continuously in a loop until

expression evaluates to Boolean false. This type of looping mechanism is often used in

a counting situation, such as the example in the next subsection.

n = int(raw_input("Enter the Number: "))

i = int(raw_input("Enter the Initiale Value: "))

while(i<=n):

print "The I Value is:",i

i += 1

82

for Statement

The other looping mechanism in Python comes to us in the form of the for statement.

Unlike the traditional conditional looping for statement found in mainstream

thirdgeneration languages (3GLs) like C, Fortran, or Pascal, Python's for is more akin to

a scripting language's iterative foreach loop.

General Syntax

Iterative loops index through individual elements of a set and terminate when

all the items are exhausted. Python's for statement iterates only through sequences, as

indicated in the general syntax here:

for iter_var in sequence:

suite_to_repeat

The sequence sequence will be iterated over, and with each loop, the iter_var iteration

variable is set to the current element of the sequence, presumably for use in

suite_to_repeat.

83

Used with Sequence Types

In this section, we will see how the for loop works with the different sequence types. The

examples will include string, list, and tuple types.

>>> for eachLetter in 'Names':

print 'current letter:', eachLetter

current letter: N

current letter: a

current letter: m

current letter: e

current letter: s

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence

itself:

>>> nameList = ['Shirley', "Terry", 'Joe', 'Heather', 'Lucy']

>>> for nameIndex in range(len(nameList)):

print "Liu,", nameList[nameIndex]

Liu, Shirley

Liu, Terry

Liu, Joe

Liu, Heather

Liu, Lucy

84

range() Full Syntax

Python presents two different ways to use range(). The full syntax requires that two or all

three integer arguments are present:

range(start, end, step=1)

range() will then return a list where for any k, start <= k < end and k iterates from start to

end in increments of step. step cannot be 0, or else an error condition will occur.

>>> range(2, 19, 3)

[2, 5, 8, 11, 14, 17]

If step is omitted and only two arguments given, step takes a default value of 1.

>>> range(3,7)

[3, 4, 5, 6]

Let's take a look at an example used in the interpreter environment:

>>> for eachVal in range(2, 19, 3):

print "value is:", eachVal

value is: 2

value is: 5

value is: 8

value is: 11

value is: 14

value is: 17

85

range() Abbreviated Syntax

range() also has a simple format, which takes one or both integer arguments:

range(start=0, end)

Given both values, this shortened version of range() is exactly the same as the long

version of range() taking two parameters with step defaulting to 1. However, if given only

a single value, start defaults to zero, and range() returns a list of numbers from zero up

to the argument end:

>>> range(5)

[0, 1, 2, 3, 4]

We will now take this to the Python interpreter and plug in for and print statements to

arrive at:

>>> for count in range(5):

print count

…

0

1

2

3

4

Once range() executes and produces its list result, our expression above is equivalent

to the following:

>>> for count in [0, 1, 2, 3, 4]:

print count

86

NOTE

Now that you know both syntaxes for range(), one nagging question you may have is,

why not just combine the two into a single one that looks like this?

range(start=0, end, step=1)# invalid

This syntax will work for a single argument or all three, but not two. It is illegal because

the presence of step requires start to be given. In other words, you cannot provide end

and step in a two-argument version because they will be (mis)interpreted as start and

end.

xrange() Function for Limited Memory Situations

xrange() is similar to range() except that if you have a really large range list, xrange()

may come in more handy because it does not have to make a complete copy of the list

in memory. This built-in was made for exclusive use in for loops. It doesn't make sense

outside a for loop. Also, as you can imagine, the performance will not be as good

because the entire list is not in memory. Now that we've covered all the loops Python

has to offer, let us take a look at the peripheral commands that typically go together with

loops. These include statements to abandon the loop (break) and to immediately begin

the next iteration (continue).

87

break Statement

The break statement in Python terminates the current loop and resumes execution at

the next statement, just like the traditional break found in C. The most common use for

break is when some external condition is triggered (usually by testing with an if

statement), requiring a hasty exit from a loop. The break statement can be used in both

while and for loops.

count = num / 2

while count > 0:

if (num % count == 0):

print count, 'is the largest factor of', num

break

count = count - 1

The task of this piece of code is to find the largest divisor of a given number num. We

iterate through all possible numbers that could possibly be factors of num, using the

count variable and decrementing for every value that does NOT divide num. The first

number that evenly divides num is the largest factor, and once that number is found, we

no longer need to continue and use break to terminate the loop.

88

continue Statement
Whether in Python, C, Java, or any other structured language which features

the continue statement, there is a misconception among some beginning programmers

that the traditional continue statement "immediately starts the next iteration of a loop.“

While this may seem to be the apparent action, we would like to clarify this somewhat

invalid supposition. Rather than beginning the next iteration of the loop when a continue

statement is encountered, a continue statement terminates or discards the remaining

statements in the current loop iteration and goes back to the top.

If we are in a conditional loop, the conditional expression is checked for validity

before beginning the next iteration of the loop. Once confirmed, then the next iteration

begins. Likewise, if the loop were iterative, a determination must be made as to whether

there are any more arguments to iterate over. Only when that validation has completed

successfully can we begin the next iteration.

valid = 0

count = 3

while count > 0:

input = raw_input("enter password")

check for valid passwd

for eachPasswd in passwdList:

if input == eachPasswd:

valid = 1

break

if not valid: # (or valid == 0)

print "invalid input"

count = count - 1

continue

else:

break

89

pass Statement

One Python statement not found in C is the pass statement. Because Python does not

use curly braces to delimit blocks of code, there are places where code is syntactically

required. We do not have the equivalent empty braces or single semicolon the way C

has to indicate "do nothing." If you use a Python statement that expects a sub-block of

code or suite, and one is not present, you will get a syntax error condition. For this

reason, we have pass, a statement that does absolutely nothing—it is a true NOP, to

steal the "No OPeration" assembly code jargon. Style- and development-wise, pass is

also useful in places where your code will eventually go, but has not been written yet

(e.g., in stubs for example):

def foo_func():

pass

or

if user_choice == 'do_calc':

pass

else:

pass

90

FUNCTIONS

91

What Are Functions?

1. Functions are the structured or procedural programming way of organizing

the logic in your programs.

2. Large blocks of code can be neatly segregated into manageable chunks, and

space is saved by putting oft-repeated code in functions as opposed to

multiple copies everywhere—this also helps with consistency because

changing the single copy means you do not have to hunt for and make

changes to multiple copies of duplicated code.

3. The basics of functions in Python are not much different from those of other

languages with which you may be familiar.

Functions can appear in different ways… here is a sampling profile of how you will

seefunctions created, used, or otherwise referenced:

92

Functions vs. Procedures

1. Functions are often compared to procedures. Both are entities which can be

invoked, but the traditional function or "black box," perhaps taking some or

no input parameters, performs some amount of processing and concludes

by sending back a return value to the caller.

2. Some functions are Boolean in nature, returning a "yes" or "no" answer, or,

more appropriately, a non-zero or zero value, respectively. Procedures,

often compared to functions, are simply special cases, functions which do

not return a value.

3. As you will see below, Python procedures are implied functions because the

interpreter implicitly returns a default value of None.

Return Values and Function Types

1. Functions may return a value back to its caller and those which are more

procedural in nature do not explicitly return anything at all.

2. Languages which treat procedures as functions usually have a special type

or value name for functions that "return nothing.“

3. These functions default to a return type of "void" in C, meaning no value

returned.

4. In Python, the equivalent return object type is None.

93

The hello() function acts as a procedure in the code below, returning no value. If the

return value is saved, you will see that its value is None:

>>> def hello():

print 'hello world'

>>> res = hello()

hello world

>>> res

>>> print res

None

>>> type(res)

<type 'None'>

Also, like most other languages, you may return only one value/object from a function in

Python. One difference is that in returning a container type, it will seem as if you can

actually return more than a single object. In other words, you can't leave the grocery

store with multiple items, but you can throw them all in a single shopping bag which you

walk out of the store with, perfectly legal.

94

def foo():

return ['xyz', 1000000, -98.6]

def bar():

return 'abc', [42, 'python', "Guido"

The foo() function returns a list, and the bar() function returns a tuple. Because of the

tuple's syntax of not requiring the enclosing parentheses, it creates the perfect illusion of

returning multiple items. If we were to properly enclose the tuple items, the definition of

bar() would look like:

def bar():

return ('abc', [4-2j, 'python'], "Guido")

As far as return values are concerned, tuples can be saved in a number of ways. The

following three ways of saving the return values are equivalent:

>>> aTuple = bar()

>>> x, y, z = bar()

>>> (a, b, c) = bar()

>>> aTuple

('abc', [(4-2j), 'python'], 'Guido')

>>> x, y, z

('abc', [(4-2j), 'python'], 'Guido')

>>> (a, b, c)

('abc', [(4-2j), 'python'], 'Guido')

95

Many languages which support functions maintain the notion that a function's type is the

type of its return value. In Python, no direct type correlation can be made since Python is

dynamically-typed and functions can return values of different types. Because

overloading is not a feature

Calling Functions

Function Operator

Functions are called using the same pair of parentheses that you are used to. In fact,

some consider (()) to be a two-character operator, the function operator. As you are

probably aware, any input parameters or arguments must be placed between these

calling parentheses. Parentheses are also used as part of function declarations to define

those arguments.

Keyword Arguments

The concept of keyword arguments applies only to function invocation. The idea here is

for the caller to identify the arguments by parameter name in a function call. This

specification allows for arguments to be missing or out-of-order because the interpreter

is able to use the provided keywords to match values to parameters. For a simple

example, imagine a function foo() which has the following pseudocode definition:

96

def foo(x):

foo_suite # presumably does so processing with 'x'

Standard calls to foo(): foo(42) foo('bar') foo(y)

Keyword calls to foo(): foo(x=42) foo(x='bar') foo(x=y)

For a more realistic example, let us assume you have a function called net_conn() and

you know that it takes two parameters, say, host and port:

def net_conn(host, port):

net_conn_suite

Naturally, we can call the function giving the proper arguments in the correct positional

order which they were declared:

net_conn('kappa', 8080)

The host parameter gets the string 'kappa' and port gets 8080. Keyword arguments

allow out-of-order parameters, but you must provide the name of the parameter as a

"keyword" to have your arguments match up to their corresponding argument names, as

in the following:

net_conn(port=8080, host='chino')

Keyword arguments may also be used when arguments are allowed to be "missing."

97

Creating Functions

def Statement

Functions are created using the def statement, with a syntax like the following:

def function_name(arguments):

"function_documentation_string"

function_body_suite

The header line consists of the def keyword, the function name, and a set of arguments

(if any). The remainder of the def clause consists of an optional but highly-

recommended documentation string and the required function body suite. We have seen

many function declarations throughout this text, and here is another:

def helloSomeone(who):

'returns a salutory string customized with the input'

return "Hello" + str(who)

98

Declaration vs. Definition

Some programming languages differentiate between function declarations and function

definitions. A function declaration consists of providing the parser with the function

name, and the names (and traditionally the types) of its arguments, without necessarily

giving any lines of code for the function, which is usually referred to as the function

definition. In languages where there is a distinction, it is usually because the function

definition may belong in a physically different location in the code from the function

declaration. Python does not make a distinction between the two, as a function clause is

made up of a declarative header line which is immediately followed by its defining suite.

Forward References

Like some other high-level languages, Python does not permit you to reference or call a

function before it has been declared. We can try a few examples to illustrate this:

def foo():

print 'in foo()'

bar()

If we were to call foo() here, it will fail because bar() has not been declared yet:

>>> foo()

in foo()

Traceback (innermost last):

File "<stdin>", line 1, in ?

File "<stdin>", line 3, in foo

NameError: bar

99

We will now define bar(), placing its declaration before foo()'s declaration:

def bar():

print 'in bar()'

def foo():

print 'in foo()'

bar()

Now we can safely call foo() with no problems:

>>> foo()

in foo()

in bar()

In fact, we can even declare foo() before bar():

def foo():

print 'in foo()'

bar()

def bar():

print 'in bar()'

Amazingly enough, this code still works fine with no forward referencing problems:

>>> foo()

in foo()

in bar()

100

This piece of code is fine because even though a call to bar() (from foo()) appears

before bar()'s definition, foo() itself is not called before bar() is declared. In other words,

we declared foo(), then bar(), and then called foo(), but by that time, bar() existed

already, so the call succeeds. Notice that the output of foo() succeeded before the error

came about. NameError is the exception that is always raised when any uninitialized

identifiers are accessed.

Passing Functions

The concept of function pointers is an advanced topic when learning a language such as

C, but not Python where functions are like any other object. They can be referenced

(accessed or aliased to other variables), passed as arguments to functions, be elements

of container objects like lists and dictionaries, etc. The one unique characteristic of

functions which may set them apart from other objects is that they are callable, i.e., can

be invoked via the function operator. Because all objects are passed by reference,

functions are no different. When assigning to another variable, you are assigning the

reference to the same object; and if that object is a function, then all aliases to that same

object are invokable:

>>> def foo():

… print 'in foo()'

…

>>> bar = foo

>>> bar()

in foo()

101

When we assigned foo to bar, we are assigning the same function object to bar, thus we

can invoke bar() in the same way we call foo(). Be sure you understand the difference

between "foo" (reference of the function object) and "foo()" (invocation of the function

object) Taking our reference example a bit further, we can even pass functions in as

arguments to other functions for invocation:

>>> def bar(argfunc):

… argfunc()

…

>>> bar(foo)

in foo()

Note that it is the function object foo that is being passed to bar().bar() is the function

that actually calls foo() (which has been aliased to the local variable argfunc in the same

way that we assigned foo to bar.

102

def convert(func, seq):

newSeq = []

for eachNum in seq:

newSeq.append(func(eachNum))

return newSeq

def test():

myseq = (123, 45.67, -6.2e8, 999999999L)

print convert(int, myseq)

print convert(long, myseq)

print convert(float, myseq)

test()

[123, 45, -620000000, 999999999]

[123L, 45L, -620000000L, 999999999L]

[123.0, 45.67, -620000000.0, 999999999.0]

Output

103

Formal Arguments

A Python function's set of formal arguments consists of all parameters passed to the

function on invocation for which there is an exact correspondence to those of the

argument list in the function declaration. These arguments include all required

arguments (passed to the function in correct positional order), keyword arguments

(passed in- or outof- order, but which have keywords present to match their values to

their proper positions in the argument list), and all arguments which have default values

which may or may not be part of the function call. For all of these cases, a name is

created for that value in the (newly-created) local namespace and can be accessed as

soon as the function begins execution.

def addition(x,y): # Formal Aruguments

a = x

b = y

c = a + b

print "Addition of the Two Numbers:",c

a1 = int(raw_input("Enter the a1 Value"))

b1 = int(raw_input("Enter the a2 Value"))

addition(a1,b1) #Actual Arguments

104

Positional Arguments

These are the standard vanilla parameters that we are all familiar with. Positional

arguments must be passed in the exact order that they are defined for the functions that

are called. Also, without the presence of any default arguments (see next section), the

exact number of arguments passed to a function (call) must be exactly the number

declared:

>>> def foo(who): # defined for only 1 argument

… print 'Hello', who

…

>>> foo() # 0 arguments… BAD

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: not enough arguments; expected 1, got 0

>>>

>>> foo('World!') # 1 argument… WORKS

Hello World!

>>>

>>> foo('Mr.', 'World!')# 2 arguments… BAD

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: too many arguments; expected 1, got 2

105

Default Arguments

Default arguments are parameters which are defined to have a default value if one is not

provided in the function call for that argument. Such definitions are given in the function

declaration header line. C++ and Java are other languages which support default

arguments and whose declaration syntax is shared with Python: The argument name is

followed by an “assignment of its default value. This assignment is merely a syntactical

way of indicating that this assignment will occur if no value is passed in for that

argument.

The syntax for declaring variables with default values in Python is such that all positional

arguments must come before any default arguments:

def function_name(posargs,defarg1=dval1, defarg2=dval2,…):

"function_documentation_string"

function_body_suite

Each default argument is followed by an assignment statement of its default value. If no

value is given during a function call, then this assignment is realized.

106

Why Default Arguments?

1. Default arguments add a wonderful level of robustness to applications

because they allow for some flexibility that is not offered by the standard

positional parameters.

2. That gift comes in the form of simplicity for the applications programmer. Life

is not as complicated when there are a fewer number of parameters that

one needs to worry about.

3. This is especially helpful when one is new to an API interface and does not

have enough knowledge to provide more targeted values as arguments.

4. The concept of using default arguments is analogous to the process of

installing software on your computer.

5. How often does one chose the "default install" over the "custom install?" I

would say probably almost always. It is a matter of convenience and

knowhow, not to mention a timesaver.

6. And if you are one of those gurus who always chooses the custom install,

please keep in mind that you are one of the minority.

def taxMe(cost, rate=0.0825):

return cost + (cost * rate)

print taxMe(100)

print taxMe(100, 0.05)

107

Variable-length Arguments

There may be situations where your function is required to process an unknown number

of arguments. These are called variable-length argument lists. Variable-length

arguments are not named explicitly in function declarations because the number of

arguments is unknown before runtime (and even during execution, the number of

arguments may be different on successive calls), an obvious difference from formal

arguments (positional and default) which are named in function declarations. Python

supports variable-length arguments in two ways because function calls provide for both

keyword and non-keyword argument types.

108

EXCEPTION IN PYTHON

109

As you were going through some of the examples in the previous chapters, you no doubt

noticed what happens when your program "crashes" or terminates due to unresolved

errors. A "traceback" notice appears along with a notice with as much diagnostic

information as the interpreter can give you, including the error name, reason, and

perhaps even the line number near or exactly where the error occurred. All errors have a

similar format, regardless of whether running within the Python interpreter or standard

script execution, providing a consistent error interface. All errors, whether they be

syntactical or logical, result from behavior incompatible with the Python interpreter and

cause exceptions to be raised.

NameError: attempt to access an

undeclared variable

>>> foo

Traceback (innermost last):

File "<interactive input>", line 0, in ?

NameError: foo

ZeroDivisionError: division by any

numeric zero
>>> 12.4/0.0

Traceback (innermost last):

File "<interactive input>", line 0, in ?

ZeroDivisionError: float division

IndexError: request for an out-of-range

index for sequence

>>> aList = []

>>> aList[0]

Traceback (innermost last):

File "<stdin>", line 1, in ?

IndexError: list index out of range

KeyError: request for a non-existent

dictionary key

>>> aDict = {'host': 'earth', 'port': 80}

>>> print aDict['server']

Traceback (innermost last):

File "<stdin>", line 1, in ?

KeyError: server

110

IOError: input/output error

>>> f = open("blah")

Traceback (innermost last):

File "<interactive input>", line 1, in ?

IOError: [Errno 2] No such file or directory:

'blah'

AttributeError: attempt to access an unknown object attribute

>>> class myClass:

… pass

…

>>> myInst = myClass()

>>> myInst.bar = 'spam'

>>> myInst.bar

'spam'

>>> myInst.foo

Traceback (innermost last):

File "<stdin>", line 1, in ?

AttributeError: foo

111

Detecting and Handling Exceptions

1. Exceptions can be detected by incorporating them as part of a try statement.

2. Any code suite of a try statement will be monitored for exceptions.

3. There are two main forms of the try statement: try-except and try-finally.

4. These statements are mutually exclusive, meaning that you pick only one of

them.

5. A try statement is either accompanied by one or more except clauses or

exactly one finally clause. (There is no such thing as a hybrid "try-except-

finally.") try-except statements allow one to detect and handle exceptions.

6. There is even an optional else clause for situations where code needs to run

only when no exceptions are detected.

7. Meanwhile, try-finally statements allow only for detection and processing of

any obligatory clean-up (whether or not exceptions occur), but otherwise has

no facility in dealing with exceptions.

try-except Statement

The try-except statement (and more complicated versions of this statement)

allows you to define a section of code to monitor for exceptions and also provides the

mechanism to execute handlers for exceptions.

The syntax for the most general try-except statement looks like this:

try:

try_suite # watch for exceptions here

except Exception:

except_suite # exception-handling code

112

Let us give one example, then explain how things work. We will use our IOError example

from above. We can make our code more robust by adding a try-except "wrapper"

around the code:

>>> try:

… f = open('blah')

… except IOError:

… print 'could not open file'

…

could not open file

As you can see, our code now runs seemingly without errors. In actuality, the same

IOError still occurred when we attempted to open the nonexistent file. The difference?

We added code to both detect and handle the error. When the IOError exception was

raised, all we told the interpreter to do was to output a diagnostic message. The program

continues and does not "bomb out" as our earlier example

Wrapping a Built-in Function

The float() built-in function has a primary purpose of converting any numeric type to a

float. In Python 1.5, float() was given the added feature of being able to convert a

number given in string representation to an actual float value, obsoleting the use of the

atof() function of the string module. Readers with older versions of Python may still use

string.atof(), replacing float(), in the examples we use here.

113

>>> float(12345)

12345.0

>>> float('12345')

12345.0

>>> float('123.45e67')

1.2345e+069

Unfortunately, float() is not very forgiving when it comes to bad input:

>>> float('abcde')

Traceback (innermost last):

File "<stdin>", line 1, in ?

float('abcde')

ValueError: invalid literal for float(): abcde

>>>

>>> float(['this is', 1, 'list'])

Traceback (innermost last):

File "<stdin>", line 1, in ?

float(['this is', 1, 'list'])

TypeError: object can't be converted to float

114

Notice in the errors above that float() does not take too kindly to strings which

do not represent numbers or non-strings. Specifically, if the correct argument type was

given (string type) but that type contained an invalid value, the exception raised would

be ValueError because it was the value that was improper, not the type. In contrast, a list

is a bad argument altogether, not even being of the correct type; hence, TypeError was

thrown.

Our exercise is to call float() "safely," or in a more "safe manner," meaning that

we want to ignore error situations because they do not apply to our task of converting

numeric string values to floating point numbers, yet are not severe enough errors that

we feel the interpreter should abandon execution. To accomplish this, we will create a

"wrapper" function, and, with the help of try-except, create the environment that we

envisioned. We shall call it safe_float(). In our first iteration, we will scan and ignore only

ValueErrors, because they are the more likely culprit. TypeErrors rarely happen since

somehow a non-string must be given to float().

def safe_float(object):

try:

return float(object)

except ValueError:

pass

115

The first step we take is to just "stop the bleeding." In this case, we make the error go

away by just "swallowing it." In other words, the error will be detected, but since we have

nothing in the except suite (except the pass statement, which does nothing but serve as

a syntactical placeholder for where code is supposed to go), no handling takes place.

We just ignore the error.

One obvious problem with this solution is that we did not explicitly return anything to the

function caller in the error situation. Even though None is returned (when a function does

not return any value explicitly, i.e., completing execution without encountering a return

object statement), we give little or no hint that anything wrong took place. The very least

we should do is to explicitly return None so that our function returns a value in both

cases and makes our code somewhat easier to understand:

def safe_float(object):

try:

retval = float(object)

except ValueError:

retval = None

return retval

Bear in mind that with our change above, nothing about our code changed except that

we used one more local variable. In designing a well-written application programmer

interface (API), you may have kept the return value more flexible.

116

Perhaps you documented that if a proper argument was passed to safe_float(), then

indeed, a floating point number would be returned, but in the case of an error, you chose

to return a string indicating the problem with the input value. We modify our code one

more time to reflect this change:

def safe_float(object):

try:

retval = float(object)

except ValueError:

retval = 'could not convert non-number to float'

return retval

The only thing we changed in the example was to return an error string as

opposed to just None. We should take our function out for a "test drive" to see how well

it works so far:

>>> safe_float('12.34')

12.34

>>> safe_float('bad input')

'could not convert non-number to float'

117

We made a good start—now we can detect invalid string input, but we are still

vulnerable to invalid objects being passed in:

>>> safe_float({'a': 'Dict'})

Traceback (innermost last):

File "<stdin>", line 1, in ?

File "safeflt.py", line 28, in safe_float

retval = float(object)

TypeError: object can't be converted to float

We will address this final shortcoming momentarily, but before we further modify our

example, we would like to highlight the flexibility of the try-except syntax, especially the

except statement, which comes in a few more flavors.

try Statement with Multiple excepts
The except statement in such formats specifically detects exceptions named Exception.

You can chain multiple except statements together to handle different types of

exceptions with the same

try:

except Exception1:

suite_for_exception_Exception1

except Exception2:

suite_for_exception_Exception2

:

118

This same try clause is attempted, and if there is no error, execution continues, passing

all the except clauses. However, if an exception does occur, the interpreter will look

through your list of handlers attempting to match the exception with one of your handlers

(except clauses). If one is found, execution proceeds to that except suite.

Our safe_float() function has some brains now to detect specific exceptions. Even

smarter code would handle each appropriately. To do that, we have to have separate

except statements, one for each exception type. That is no problem as Python allows

except statements can be chained together. Any reader familiar with popular

thirdgeneration languages (3GLs) will no doubt notice the similarities to the switch/case

statement which is absent in Python. We will now create separate messages for each

error type, providing even more detail to the user as to the cause of his or her problem:

def safe_float(object):

try:

retval = float(object)

except ValueError:

retval = 'could not convert non-number to float'

except TypeError:

retval = 'object type cannot be converted to float'

return retval

119

Running the code above with erroneous input, we get the following:

>>> safe_float('xyz')

'could not convert non-number to float'

>>> safe_float(())

'argument must be a string'

>>> safe_float(200L)

200.0

>>> safe_float(45.67000)

45.67

except Statement with Multiple Exceptions

We can also use the same except clause to handle multiple exceptions.

Except statements which process more than one exception require that the set of

exceptions be contained in a tuple:

except (Exception1, Exception2):

suite_for_Exception1_and_Exception2

The above syntax example illustrates how two exceptions can be handled by

the same code. In general, any number of exceptions can follow an except statement as

long as they are all properly enclosed in a tuple:

120

except (Exception1[, Exception2[, … ExceptionN…]]):

suite_for_exceptions_Exception1_to_ExceptionN

If for some reason, perhaps due to memory constraints or dictated as part of the design

that all exceptions for our safe_float() function must be handled by the same code, we

can now accommodate that requirement:

def safe_float(object):

try:

retval = float(object)

except (ValueError, TypeError):

retval = 'argument must be a number or numeric string'

return retval

Now there is only the single error string returned on erroneous input:

>>> safe_float('Spanish Inquisition')

'argument must be a number or numeric string'

>>> safe_float([])

'argument must be a number or numeric string'

>>> safe_float('1.6')

1.6

>>> safe_float(1.6)

1.6

>>> safe_float(932)

932.0

121

try-except with No Exceptions Named

The final syntax for try-except we are going to present is one which does not

specify an exception on the except header line:

try:

try_suite # watch for exceptions here

except:

except_suite # handles all exceptions

Although this code "catches the most exceptions," it does not promote good Python

coding style. One of the chief reasons is that it does not take into account the potential

root causes of problems which may generate exceptions. Rather than investigating and

discovering what types of errors may occur and how they may be prevented from

happening, this type of code "turns the blind eye," thereby ignoring the possible causes

NOTE

The try-except statement has been included in Python to provide a powerful

mechanism for programmers to track down potential errors and to perhaps provide logic

within the code to handle situations where it may not otherwise be possible, for example

in C. The main idea is to minimize the number of errors and still maintain program

correctness. As with all tools, they must be used properly.

122

One incorrect use of try-except is to serve as a giant bandage over large pieces of

code. By that we mean putting large blocks, if not your entire source code, within a try

and/or have a large generic except to "filter" any fatal errors by ignoring them:

this is really bad code

try:

large_block_of_code # bandage of large piece of code

except:

Pass

blind eye ignoring all errors

Obviously, errors cannot be avoided, and the job of try-except is to provide a

mechanism whereby an acceptable problem can be remedied or properly dealt with, and

not be used as a filter. The construct above will hide many errors, but this type of usage

promotes a poor engineering practice that we certainly cannot endorse.

"Exceptional Arguments“

No, the title of this section has nothing to do with having a major fight. Instead,

we are referring to the fact that exception may have arguments are passed along to the

exception handler when they are raised. When an exception is raised, parameters are

generally provided as an additional aid for the exception handler. Although arguments to

exceptions are optional, the standard built-in exceptions do provide at least one

argument, an error string indicating the cause of the exception.

123

Exception parameters can be ignored in the handler, but the Python provides syntax for

saving this value. To access any provided exception argument, you must reserve a

variable to hold the argument. This argument is given on the except header line and

follows the exception type you are handling. The different syntaxes for the except

statement can be extended to the following:

single exception

except Exception,

Argument: suite_for_Exception_with_Argument

multiple exceptions except (Exception1, Exception2, …, ExceptionN),

Argument: suite_for_Exception1_to_ExceptionN_with_Argument

The example below is when an invalid object is passed to the float() built-in function,

resulting in a TypeError exception:

>>> try:

… float(['float() does not', 'like lists', 2])

… except TypeError, diag:# capture diagnostic info

… pass

…

>>> type(diag)

<type 'instance'>

>>>

>>> print diag

object can't be converted to float

124

The first thing we did was cause an exception to be raised from within the try statement.

Then we passed cleanly through by ignoring but saving the error information. Calling the

type() built-in function, we were able to confirm that our exception was indeed an

instance. Finally, we displayed the error by calling print with our diagnostic exception

argument.

To obtain more information regarding the exception, we can use the special __class__

instance attribute which identifies which class an instance was instantiated from. Class

objects also have attributes, such as a documentation string and a string name which

further illuminate the error type:

>>> diag # exception instance object

<exceptions.TypeError instance at 8121378>

>>> diag.__class__ # exception class object

<class exceptions.TypeError at 80f6d50>

>>> diag.__class__.__doc__ # exception class documentation string 'Inappropriate

argument type.'

>>> diag.__class__.__name__ # exception class name

'TypeError'

125

In the following code snippet, we replace our single error string with the string

representation of the exception argument.

def safe_float(object):

try:

retval = float(object)

except (ValueError, TypeError), diag:

retval = str(diag)

return retval

Upon running our new code, we obtain the following (different) messages when

providing improper input to safe_float(), even if both exceptions are managed by the

same handler:

>>> safe_float('xyz')

'invalid literal for float(): xyz'

>>> safe_float({})

'object can't be converted to float'

else Clause
We have seen the else statement with other Python constructs such as conditionals and

loops. With respect to try-except statements, its functionality is not that much different

from anything else you have seen: The else clause executes if no exceptions were

detected in the preceding try suite.

126

All code within the try suite must have completed successfully (i.e., concluded with no

exceptions raised) before any code in the else suite begins execution. Here is a short

example in Python pseudocode:

import 3rd_party_module

log = open('logfile.txt', 'w')

try:

3rd_party_module.function()

except:

log.write("*** caught exception in module\n")

else:

log.write("*** no exceptions caught\n")

log.close()

In the above example, we import an external module and test it for errors. A log file is

used to determine whether there were defects in the third-party module code.

Depending on whether an exception occurred during execution of the external function,

we write differing messages to the log.

try-finally Statement

The try-finally statement differs from its try-except brethren in that it is not used to

handle exceptions. Instead it is used to maintain consistent behavior regardless of

whether or not exceptions occur. The finally suite executes regardless of an exception

being triggered within the try suite.

127

try:

try_suite

finally:

finally_suite # executes regardless of exceptions

When an exception does occur within the try suite, execution jumps immediately to the

finally suite. When all the code in the finally suite completes, the exception is reraised

for handling at the next higher layer. Thus it is common to see a try-finally nested as

part of a try-except suite.

x = 10

y = 0

try:

z = x / y

print "Division of the Two Numbers:",z

except ArithmeticError:

print "Arithmetic Error: Division By Zero"

finally:

print "Can't identify the such error"

I / O:

>>>

Arithmetic Error: Division By Zero

Can't identify the such error

>>>

x = 10

y = 0

try:

z = x / y

print "Division of the Two Numbers:",z

finally:

print "Can't identify the such error"
>>>

Can't identify the such error

Traceback (most recent call last):

File "C:/Python27/ee", line 5, in <module>

z = x / y

ZeroDivisionError: integer division or

modulo by zero

>>>

128

Exceptions as Strings # this may not work… risky!

try:

:

raise 'myexception'

:

except 'myexception‘:

suite_to_handle_my_string_exception

except:

suite_for_other_exceptions

this is a little bit better

myexception = 'myexception'

try:

:

raise myexception

:

except myexception:

suite_to_handle_my_string_exception

except:

suite_for_other_exceptions

With this update, the same string object is used. However, if you are going to use this

code, you might as well use an exception class. Substitute the myexception assignment

above with:

129

this is the best choice

class MyException(Exception):

pass

:

try:

:

raise MyException

:

except MyException:

suite_to_handle_my_string_exception

except:

suite_for_other_exceptions

So you see, there really is no reason not to use exception classes from now on when

creating your own exceptions. Be careful, however, because you may end up using an

external module which may still have exceptions implemented as strings.

Raising Exceptions

The interpreter was responsible for raising all of the exceptions which we have seen so

far. These exist as a result of encountering an error during execution. A programmer

writing an API may also wish to throw an exception on erroneous input, for example, so

Python provides a mechanism for the programmer to explicitly generate an exception:

the raise statement.

130

raise Statement

The raise statement is quite flexible with the arguments which it supports, translating to

a large number of different formats supported syntactically. The general syntax for raise

is:

raise [Exception [, args [, traceback]]]

The first argument, Exception, is the name of the exception to raise. If present,

it must either be a string, class, or instance (more below). Exception must be given if any

of the other arguments (arguments or traceback) are present. A list of all Python

standard exceptions is given in Table 10.2. The second expression contains optional

args (a.k.a. parameters, values) for the exception. This value is either a single object or

a tuple of objects. When exceptions are detected, the exception arguments are always

returned as a tuple. If args is a tuple, then that tuple represents the same set of

exception arguments which are given to the handler.

If args is a single object, then the tuple will consist solely of this one object (i.e.,

a tuple with one element). In most cases, the single argument consists of a string

indicating the cause of the error. When a tuple is given, it usually equates to an error

string, an error number, and perhaps an error location, such as a file, etc.

131

The final argument, traceback, is also optional (and rarely used in practice), and, if

present, is the traceback object used for the exception—normally a traceback object is

newly created when an exception is raised. This third argument is useful if you want to

re-raise an exception (perhaps to point to the previous location from the current).

Arguments which are absent are represented by the value None.

The most common syntax used is when Exception is a class. No additional parameters

are ever required, but in this case, if they are given, can be a single object argument, a

tuple of arguments, or an exception class instance. If the argument is an instance, then it

can be an instance of the given class or a derived class (subclassed from a pre-existing

exception class). No additional arguments (i.e., exception arguments) are permitted if

the argument is an instance.

What happens if the argument is an instance? No problems arise if instance is

an instance of the given exception class. However, if instance is not an instance of the

class nor an instance of a subclass of the class, then a new instance of the exception

class will be created with exception arguments copied from the given instance. If

instance is an instance of a subclass of the exception class, then the new exception will

be instantiated from the subclass, not the original exception class.

If the additional parameter to the raise statement used with an exception class

is not an instance—instead, it is a singleton or tuple—then the class is instantiated and

args is used as the argument list to the exception. If the second parameter is not present

or None, then the argument list is empty.

132

to illuminate all the different ways which raise can be used.

133

Assertions

Assertions are diagnostic predicates which must evaluate to Boolean true;

otherwise, an exception is raised to indicate that the expression is false. These work

similarly to the assert macros which are part of the C language preprocessor, but in

Python these are runtime constructs (as opposed to pre-compile directives).

If you are new to the concept of assertions, no problem. The easiest way to

think of an assertion is to liken it to a raise-if statement (or to be more accurate, a raise-

if-not statement). An expression is tested, and if the result comes up false, an exception

is raised.

assert Statement

The assert statement evaluates a Python expression, taking no action if the assertion

succeeds (similar to a pass statement), but otherwise raises an AssertionError

exception. The syntax for assert is:

assert expression[, arguments]

Here are some examples of the use of the assert statement:

assert 1 == 1

assert (2 + 2) == (2 * 2)

assert len(['my list', 12]) < 10

assert range(3) == [0, 1, 2]

134

AssertionError exceptions can be caught and handled like any other exception using

the try-except statement, but if not handled, they will terminate the program and

produce a traceback similar to the following:

>>> assert 1 == 0

Traceback (innermost last):

File "<stdin>", line 1, in ?

AssertionError

Like the raise statement we investigated in the previous section, we can

provide an exception argument to our assert command:

>>> assert 1 == 0, 'One does not equal zero silly!'

Traceback (innermost last):

File "<stdin>", line 1, in ?

AssertionError: One does not equal zero silly!

Here is how we would use a try-except statement to catch an AssertionError

exception:

try:

assert 1 == 0, 'One does not equal zero silly!'

except AssertionError, args:

print '%s: %s' % (args.__class__.__name__, args)

Executing the above code from the command-line would result in the following output:

AssertionError: One does not equal zero silly!

135

Standard Exceptions

136

137

ValueError

try:

float('xyz')

except ValueError:

print "The String is Cannot convert Float"

TypeError

try:

a = ['xyz',10.0,68]

float(a)

except TypeError:

print "The Object type is Cannot Convert Float Type"

ArithmeticError

try:

a = 10

b = 0

c = a / b

print c

except ArithmeticError:

print "Division By Error"

138

ZeroDivisionError

try:

a = 10

b = 0

c = a / b

print c

except ZeroDivisionError:

print "Division By Error"

Exception

try:

print a

except Exception:

print "The Variable is Not defined"

OverflowError

import math

try:

math.exp(1000) / math.exp(1000)

except OverflowError:

print "The Overflow Error"

KeyError

try:

a = {10:100,20:200}

print a

print a[50]

except KeyError:

print "The Key Value is not defined in the

Dictionary"

NameError

try:

print a

except NameError:

print "a is Not Defined"

IndexError

try:

a = [10,20,30,40]

print a

print a[9]

except IndexError:

print "The Loacation is Not Identified"

139

IOError

try:

f = open("ccet.txt")

except IOError:

print "The File is Cannot be Opened"

AttributeError

class Example:

pass

try:

e = Example()

e.a = 1234

print e.a

print e.b

except AttributeError:

print "The Instance of the Class is Not Defined"

StandardError

try:

a = [10,20,30,40]

print a

print a[9]

except StandardError:

print "The Loacation is Not Identified"

140

Files

and

Input / Output

141

File Objects

File objects can be used not only to access normal disk files, but also any other type of

"file" that uses that abstraction. Once the proper "hooks" are installed, you can access

other objects with file-like interfaces in the same manner you would access normal files.

The open() built-in function (see below) returns a file object which is then used for all

succeeding operations on the file in question. There are a large number of other

functions which return a file or file-like object. One primary reason for this abstraction is

that many input/output data structures prefer to adhere to a common interface. It

provides consistency in behavior as well as implementation. Operating systems like Unix

even feature files as an underlying and architectural interface for communication.

Remember, files are simply a contiguous sequence of bytes. Anywhere data needs to be

sent usually involves a byte stream of some sort, whether the stream occurs as

individual bytes or blocks of data.

File Built-in Function [open()]

As the key to opening file doors, the open() built-in function provides a general interface

to initiate the file input/output (I/O) process. open() returns a file object on a successful

opening of the file or else results in an error situation. The basic syntax of the open()

built-in function is:

file_object = open(file_name, access_mode='r', buffering=-1)

142

The file_name is a string containing the name of the file to open. It can be a

relative or absolute/full pathname. The access_mode optional variable is also a string,

consisting of a set of flags indicating which mode to open the file with. Generally, files

are opened with the modes "r," "w," or "a," representing read, write, and append,

respectively. Any file opened with mode "r" must exist. Any file opened with "w" will be

truncated first if it exists, and then the file is (re)created. Any file opened with "a" will be

opened for write. If the file exists, the initial position for file (write) access is set to the

end-offile. If the file does not exist, it will be created, making it the same as if you opened

the file in "w" mode. If you are a C programmer, these are the same file open modes

used for the C library function fopen().

There are other modes supported by fopen() that will work with Python's

open(). These include the "+" for read-write access and "b" for binary access.

The other optional argument, buffering, is used to indicate the type of buffering

that should be performed when accessing the file. A value of 0 means no buffering shou

ld occur, a value of 1 signals line buffering, and any value greater than 1 indicates

buffered I/O with the given value as the buffer size. The lack of or a negative value

indicates that the system default buffering scheme should be used, which is line

buffering for any teletype or tty-like device and normal buffering for everything else.

Under normal circumstances, a buffering value is not given, thus using the system

default.

143

144

File Built-in Methods

Once open() has completed successfully and returned a file object, all subsequent

access to the file transpires with that "handle." File methods come in four different

categories:

1. input

2. output

3. movement within a file, which we will call "intra-file motion

4. miscellaneous.

Input

The read() method is used to read bytes directly into a string, reading at most the

number of bytes indicated. If no size is given, the default value is set to -1, meaning that

the file is read to the end. The readline() method reads one line of the open file (reads all

bytes until a NEWLINE character is encountered). The NEWLINE character is retained

in the returned string. The readlines() method is similar, but reads all remaining lines as

strings and returns a list containing the read set of lines.

145

Output

The write() built-in method has the opposite functionality as read() and readline(). It

takes a string which can consist of one or more lines of text data or a block of bytes and

writes the data to the file. writelines() operates on a list just like readlines(), but takes a

list of strings and writes them out to a file. NEWLINE characters are not inserted

between each line; so if desired, they must be added to the end of each line before

writelines() is called.

>>> output=['1stline', '2ndline', 'the end']

>>> [x + '\n' for x in output]

['1stline\012', '2ndline\012', 'the end\012']

Note that there is no "writeline()" method since it would be equivalent to calling

write() with a single line string terminated with a NEWLINE character.

Intra-file Motion

The seek() method (analogous to the fseek() function in C) moves the file pointer to

different positions within the file. The offset in bytes is given along with a relative offset

location called whence. A value of 0 indicates distance from the beginning of a file (note

that a position measured from the beginning of a file is also known as the absolute

offset), a value of 1 indicates movement from the current location in the file, and a value

of 2 indicates that the offset is from the end of the file. If you have used fseek() as a C

programmer, the values 0, 1, and 2 correspond directly to the constants SEEK_SET,

146

SEEK_CUR, and SEEK_END, respectively. Use of the seek() method comes to play

when opening a file for read and write access. tell() is a complementary method to

seek(); it tells you the current location of the file—in bytes from the beginning of the file.

Others

The close() method completes access to a file by closing it. The Python garbage

collection routine will also close a file when the file object reference has decreased to

zero. One way this can happen is when only one reference exists to a file, say, fp =

open(), and fp is reassigned to another file object before the original file is explicitly

closed. Good programming style suggests closing the file before reassignment to

another file object.

The fileno() method passes back the file descriptor to the open file. This is an integer

argument that can be used in lower-level operations such as those featured in the os

module. The flush() method. isatty() is a Boolean built-in method that returns 1 if the file

is a tty-like device and 0 otherwise. The truncate() method truncates the file to 0 or the

given size bytes.

File Method Miscellany

filename = raw_input('Enter file name: ')

file = open(filename, 'r')

allLines = file.readlines()

file.close()

147

for eachLine in allLines:

print eachline,

We originally described how this program differs from most standard file access in that

all the lines are read ahead of time before any display to the screen occurs. Obviously,

this is not advantageous if the file is large. In those cases, it may be a good idea to go

back to the tried-and-true way of reading and displaying one line at a time:

filename = raw_input('Enter file name: ')

file = open(filename, 'r')

done = 0

while not done:

aLine = file.readline()

if aLine != “":

print aLine,

else:

done = 1

file.close()

In this example, we do not know when we will reach the end of the file, so we create a

Boolean flag done, which is initially set for false. When we reach the end of the file, we

will reset this value to true so that the while loop will exit. We change from using

readlines()to read all lines to readline(), which reads only a single line. readline() will

return a blank line if the end of the file has been reached. Otherwise, the line is

displayed to the screen.

148

The first highlighting output to files (rather than input)

filename = raw_input('Enter file name: ')

file = open(filename, 'w')

done = 0

while not done:

aLine = raw_input("Enter a line ('.' to quit): ")

if aLine != ".":

file.write(aLine + '\n')

else:

done = 1

file.close()

The second performing both file input and output as well as using the seek() and tell()

methods for file positioning.

>>> f = open('/tmp/x', 'w+')

>>> f.tell()

0

>>> f.write('test line 1\n') # add 12-char string [0–11]

>>> f.tell()

12

>>> f.write('test line 2\n') # add 12-char string [12–23]

>>> f.tell() # tell us current file location (end))

24

149

>>> f.seek(-12, 1) # move back 12 bytes

>>> f.tell() # to beginning of line 2

12

>>> f.readline()

'test line 2\012'

>>> f.seek(0, 0) # move back to beginning

>>> f.readline()

'test line 1\012'

>>> f.tell() # back to line 2 again

12

>>> f.readline()

'test line 2\012'

>>> f.tell() # at the end again

24

>>> f.close() # close file

150

All the built-in methods for file objects:

151

File Built-in Attributes

File objects also have data attributes in addition to its methods. These attributes hold

auxiliary data related to the file object they belong to, such as the file naFme (file.name),

the mode with which the file was opened (file.mode), whether the file is closed

(file.closed), and a flag indicating whether an additional space character needs to be

displayed before successive data items when using the print statement (file.softspace).

Standard Files

There are generally three standard files which are made available to you when your

program starts. These are standard input (usually the keyboard), standard output

(buffered output to the monitor or display), and standard error (unbuffered output to the

screen). (The "buffered" or "unbuffered" output refers to that third argument to open()).

These files are named stdin, stdout, and stderr and take after their names from the C

language. When we say these files are "available to you when your program starts," that

152

means that these files are pre-opened for you, and access to these files may commence

once you have their file handles. Python makes these file handles available to you from

the sys module. Once you import sys, you have access to these files as sys.stdin,

sys.stdout, and sys.stderr. The print statement normally outputs to sys.stdout while the

raw_input() built-in function receives its input from sys.stdin.

We will now take yet another look at the "Hello World!" program so that you can

compare the similarities and differences between using print/raw_input() and directly

with the file names:

print

print 'Hello World!'

sys.stdout.write()

import sys

sys.stdout.write('Hello World!' + '\n)

Notice that we have to explicitly provide the NEWLINE character to sys.stdout's write()

method. In the input examples below, we do not because readline() executed on

sys.stdin preserves the readline. raw_input() does not, hence we will allow print to add

its NEWLINE.

raw_input()

aString = raw_input('Enter a string: ')

print aString

153

sys.stdin.readline()

import sys

sys.stdout.write('Enter a string: ')

aString = sys.stdin.readline()

sys.stdout.write(aString)

Command-line Arguments

The sys module also provides access to any command-line arguments via the sys.argv.

Command-line arguments are those arguments given to the program in addition to the

script name on invocation. Historically, of course, these arguments are so named

because they are given on the command-line along with the program name in a text-

based environment like a Unix- or DOS-shell. However, in an IDE or GUI environment,

this would not be the case. Most IDEs provide a separate window with which to enter

your Those of you familiar with C programming may ask, "Where is argc?" The strings

"argv" and "argv" stand for "argument count" and "argument vector," respectively. The

argv variable contains an array of strings consisting of each argument from the

command-line while the argc variable contains the number of arguments entered. In

Python, the value for argc is simply the number of items in the sys.argv list, and the first

element of the list, sys.argv[0], is always the program name.

sys.argv is the list of command-line arguments

154

sys.argv is the list of command-line arguments

len(sys.argv) is the number of command-line arguments (a.k.a. argc)

Let us create a small test program called argv.py with the following lines:

import sys

print 'you entered', len(sys.argv), 'arguments…'

print 'they were:', str(sys.argv)

Here is an example invocation and output of this script:

% argv.py 76 tales 85 hawk

you entered 5 arguments…

they were: ['argv.py', '76', 'tales', '85', 'hawk']

File System

Access to your file system occurs mostly through the Python os module. This module

serves as the primary interface to your operating system facilities and services from

Python. The os module is actually a front-end to the real module that is loaded, a

module that is clearly operating system-dependent. This "real" module may be one of

the following: posix (Unix), nt (Windows), mac (Macintosh), dos (DOS), os2 (OS/2), etc.

You should never import those modules directly. Just import os and the appropriate

155

module will be loaded, keeping all the underlying work hidden from sight. Depending on

what your system supports, you may not have access to some of the attributes which

may be available in other operating system modules. In addition to managing processes

and the process execution environment, the os module performs most of the major file

system operations that the application developer may wish to take advantage of. These

features include removing and renaming files, traversing the directory tree, and

managing file accessibility. Table 9.5 lists some of the more common file or directory

operations available to you from the os module. A second module that performs specific

pathname operations is also available. The os.path module is accessible through the os

module. Included with this module are functions to manage and manipulate file

pathname components, obtain file or directory information, and make file path inquiries.

Table 9.6 outlines some of the more common functions in os.path. These two modules

allow for consistent access to the file system regardless of platform or operating system.

The program in Example 9.1 (ospathex.py) test drives some of these functions from the

os and os.path modules.

156

157

158

>>> os.path.basename("z:\Python\college.txt")

'college.txt‘

>>> os.path.dirname ("z:\Python\college.txt")

'z:\\Python‘

>>> os.path.split ("z:\Python\college.txt")

('z:\\Python', 'college.txt')

>>> os.path.splitdrive ("z:\Python\college.txt")

('z:', '\\Python\\college.txt')

>>> os.path.splitext ("z:\Python\college.txt")

('z:\\Python\\college', '.txt')

>>> os.path.getatime("z:\Python\college.txt")

1299654441.0

>>> os.path.getmtime("z:\Python\college.txt")

1299654296.0

159

>>> os.path.getctime("z:\Python\college.txt")

1299654296.0758307

>>> os.path.getsize("z:\Python\college.txt")

104L

>>> os.path.exists ("z:\Python\college.txt")

True

>>> os.path.exists("z:\Python\sakthi.txt")

False

>>> os.path.exists("z:\Python\college.txt")

True

>>> os.path.isdir("z:\Python\college.txt")

False

>>> os.path.isdir("z:\Python")

True

>>> os.path.isfile("z:\Python\college.txt")

True

160

MODULES

161

If you quit from the Python interpreter and enter it again, the definitions you have made

(functions and variables) are lost. Therefore, if you want to write a somewhat longer

program, you are better off using a text editor to prepare the input for the interpreter and

running it with that file as input instead. This is known as creating a script. As your

program gets longer, you may want to split it into several files for easier maintenance.

You may also want to use a handy function that you’ve written in several programs

without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in

an interactive instance of the interpreter. Such a file is called a module; definitions from a

module can be imported into other modules or into the main module (the collection of

variables that you have access to in a script executed at the top level and in calculator

mode).

A module is a file containing Python definitions and statements. The file name is the

module name with the suffix .py appended. Within a module, the module’s name (as a

string) is available as the value of the global variable __name__. For instance, use your

favorite text editor to create a file called fibo.py in the current directory with the following

contents:

162

1. sys 2. array 3. math

4. time 5. regex 6. marshal

7. struct

A module allows you to logically organize your Python code. Grouping related

code into a module makes the code easier to understand and use.

A module is a Python object with arbitrarily named attributes that you can bind

and reference. Simply, a module is a file consisting of Python code. A module can define

functions, classes, and variables. A module can also include runnable code.

Python – Module

Module Types

1. Built – in Modules

2. User – defined Modules

1. Built – in Modules

163

Example:

The Python code for a module named aname normally resides in a file named

aname.py. Here's an example of a simple module, hello.py

def print_func(par):
print "Hello : ", par

return

The import Statement:

You can use any Python source file as a module by executing an import statement in

some other Python source file. import has the following syntax:

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the

module is present in the search path. Asearch path is a list of directories that the

interpreter searches before importing a module.

Example:

To import the module hello.py, you need to put the following command at the

top of the script:

164

#!/usr/bin/python

Import module hello
import hello

Now you can call defined function that module as follows

hello.print_func("Zara")

This would produce following result:

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This

prevents the module execution from happening over and over again if multiple imports

occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace:

Syntax:

from modname import name1[, name2[, ... nameN]]

165

Example:

For example, to import the function fibonacci from the module fib, use the

following statement:

from fib import fibonacci

This statement does not import the entire module fib into the current

namespace; it just introduces the item fibonacci from the module fib into the global

symbol table of the importing module.

The from...import * Statement:

It is also possible to import all names from a module into the current

namespace by using the following import statement:

from modname import *

This provides an easy way to import all the items from a module into the current

namespace; however, this statement should be used sparingly.

166

Locating Modules:

When you import a module, the Python interpreter searches for the module in the

following sequences:

The current directory.

If the module isn't found, Python then searches each directory in the

shell variable PYTHONPATH.

If all else fails, Python checks the default path. On UNIX, this default

path is normally /usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable.

The sys.path variable contains the current directory, PYTHONPATH, and the installation-

dependent default.

The PYTHONPATH Variable:

The PYTHONPATH is an environment variable, consisting of a list of directories. The

syntax of PYTHONPATH is the same as that of the shell variable PATH. Here is a typical

PYTHONPATH from a Windows system:

set PYTHONPATH=c:\python20\lib;

And here is a typical PYTHONPATH from a UNIX system:

set PYTHONPATH=/usr/local/lib/python

167

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

def fib2(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:
>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current

symbol table; it only enters the module name fibo there. Using the module name you can

access the functions:
>>> fibo.fib(1000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

168

>>> fibo.__name__

'fibo‘

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

A module can contain executable statements as well as function definitions. These

statements are intended to initialize the module. They are executed only the first time

the module is imported somewhere.

Each module has its own private symbol table, which is used as the global symbol table

by all functions defined in the module. Thus, the author of a module can use global

variables in the module without worrying about accidental clashes with a user’s global

variables. On the other hand, if you know what you are doing you can touch a module’s

global variables with the same notation used to refer to its functions,

modname.itemname.

Modules can import other modules. It is customary but not required to place all import

statements at the beginning of a module (or script, for that matter). The imported module

names are placed in the importing module’s global symbol table.

There is a variant of the import statement that imports names from a module directly into

the importing module’s symbol table. For example:

169

>>> from fibo import fib, fib2

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local

symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

Note that in general the practice of importing * from a module or package is frowned

upon, since it often causes poorly readable code. However, it is okay to use it to save

typing in interactive sessions.

Note

For efficiency reasons, each module is only imported once per interpreter session.

Therefore, if you change your modules, you must restart the interpreter – or, if it’s just

one module you want to test interactively, use reload(), e.g. reload(modulename).

170

Object-Oriented Programming in

PYTHON

171

Python has been an object-oriented language from day one. Because of this,

creating and using classes and objects are downright easy. This chapter helps you

become an expert in using Python's object-oriented programming support.

Overview of OOP Terminology

Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables

and instance variables) and methods, accessed via dot notation.

Class variable: A variable that is shared by all instances of a class. Class variables are

defined within a class but outside any of the class's methods. Class variables aren't

used as frequently as instance variables are.

Data member: A class variable or instance variable that holds data associated with a

class and its objects.

Function overloading: The assignment of more than one behavior to a particular

function. The operation performed varies by the types of objects (arguments) involved.

Instance variable: A variable that is defined inside a method and belongs only to the

current instance of a class.

Inheritance : The transfer of the characteristics of a class to other classes that are

derived from it.

172

Instance: An individual object of a certain class. An object obj that belongs to a class

Circle, for example, is an instance of the class Circle.

Instantiation : The creation of an instance of a class.

Method : A special kind of function that is defined in a class definition.

Object : A unique instance of a data structure that's defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

Operator overloading: The assignment of more than one function to a particular

operator.

Creating Classes:

The class statement creates a new class definition. The name of the class immediately

follows the keyword class followed by a colon as follows:

class ClassName:

'Optional class documentation string'

class_suite

The class has a documentation string which can be access via ClassName.__doc__.

The class_suite consists of all the component statements, defining class members, data

attributes, and functions.

Example:

Following is the example of a simple Python class:

173

class Employee:
'Common base class for all employees'

empCount = 0
def __init__(self, name, salary):

self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount(self):
print "Total Employee %d" % Employee.empCount

def displayEmployee(self):
print "Name : ", self.name, ", Salary: ", self.salary

The variable empCount is a class variable whose value would be shared

among all instances of a this class. This can be accessed as Employee.empCount from

inside the class or outside the class.

The first method __init__() is a special method which is called class constructor

or initialization method that Python calls when you create a new instance of this class.

You declare other class methods like normal functions with the exception that the first

argument to each method is self. Python adds the self argument to the list for you; you

don't need to include it when you call the methods.

Creating instance objects:

To create instances of a class, you call the class using class name and pass in whatever

arguments its __init__ method accepts.

174

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

Accessing attributes:

You access the object's attributes using the dot operator with object. Class variable

would be accessed using class name as follows:

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Now putting it all together:

#!/usr/bin/python

class Employee:

'Common base class for all employees'

empCount = 0

175

def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount(self):
print "Total Employee %d" % Employee.empCount

def displayEmployee(self):
print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"
emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

This would produce following result:

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

176

You can add, remove, or modify attributes of classes and objects at any time:

emp1.age = 7 # Add an 'age' attribute.

emp1.age = 8 # Modify 'age' attribute.

del emp1.age # Delete 'age' attribute.

Built-In Class Attributes:

Every Python class keeps following built-in attributes and they can be accessed using

dot operator like any other attribute:

__dict__ : Dictionary containing the class's namespace.

__doc__ : Class documentation string, or None if undefined.

__name__ : Class name.

__module__ : Module name in which the class is defined. This

attribute is "__main__" in interactive mode.

__bases__ : A possibly empty tuple containing the base classes, in the

order of their occurrence in the base class list.

print "Employee.__doc__:", Employee.__doc__

print ”Employee.__name__:", Employee.__name__

print "Employee.__module__:", Employee.__module__

print "Employee.__bases__:", Employee.__bases__

print "Employee.__dict__:", Employee.__dict__

177

The self

Class methods have only one specific difference from ordinary functions - they must

have an extra first name that has to be added to the beginning of the parameter list, but

you do do not give a value for this parameter when you call the method, Python will

provide it. This particular variable refers to the object itself, and by convention, it is given

the name self.
Although, you can give any name for this parameter, it is strongly recommended that you

use the name self - any other name is definitely frowned upon. There are many

advantages to using a standard name - any reader of your program will immediately

recognize it and even specialized IDEs (Integrated Development Environments) can

help you if you use self.

178

This would produce following result:

Employee.__doc__ : Common base class for all employees

Employee.__name__ : Employee

Employee.__module__ : __main__

Employee.__bases__ : ()

Employee.__dict__ : {'__module__': '__main__', 'displayCount':

<function displayCount at 0xb7c84994>, 'empCount': 2,

'displayEmployee‘ : <function displayEmployee at 0xb7c8441c>,

'__doc__‘ : 'Common base class for all employees',

'__init__‘ : <function __init__ at 0xb7c846bc>}

Destroying Objects (Garbage Collection):

Python deletes unneeded objects (built-in types or class instances) automatically to free

memory space. The process by which Python periodically reclaims blocks of memory

that no longer are in use is termed garbage collection. Python's garbage collector runs

during program execution and is triggered when an object's reference count reaches

zero. An object's reference count changes as the number of aliases that point to it

changes: An object's reference count increases when it's assigned a new name or

placed in a container (list, tuple, or dictionary). The object's reference count decreases

when it's deleted with del, its reference is reassigned, or its reference goes out of scope.

When an object's reference count reaches zero, Python collects it automatically.

179

You normally won't notice when the garbage collector destroys an orphaned instance

and reclaims its space. But a class can implement the special method __del__(), called

a destructor, that is invoked when the instance is about to be destroyed. This method

might be used to clean up any nonmemory resources used by an instance.

Example:

This __del__() destructor prints the class name of an instance that is about to

be destroyed:

#!/usr/bin/python

class Point:

def __init(self, x=0, y=0):

self.x = x

self.y = y

def __del__(self):

class_name = self.__class__.__name__

print class_name, "destroyed"

pt1 = Point()

pt2 = pt1

pt3 = pt1

print id(pt1), id(pt2), id(pt3) # prints the ids of the obejcts del pt1 del

pt2 del pt3

180

This would produce following result:

3083401324 3083401324 3083401324 Point destroyed

Class Inheritance:

Instead of starting from scratch, you can create a class by deriving it from a

preexisting class by listing the parent class in parentheses after the new class name:

The child class inherits the attributes of its parent class, and you can use those

attributes as if they were defined in the child class. A child class can also override data

members and methods from the parent.

Syntax:

Derived classes are declared much like their parent class; however, a list of

base classes to inherit from are given after the class name:

class SubClassName (ParentClass1[, ParentClass2, ...]):

'Optional class documentation string'

class_suite

#!/usr/bin/python

class Parent: # define parent class

parentAttr = 100

def __init__(self):

print "Calling parent constructor“

181

def parentMethod(self):
print 'Calling parent method'

def setAttr(self, attr):
Parent.parentAttr = attr

def getAttr(self):
print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class
def __init__(self):

print "Calling child constructor"
def childMethod(self):

print 'Calling child method'

c = Child() # instance of child

c.childMethod() # child calls its method
c.parentMethod() # calls parent's method
c.setAttr(200) # again call parent's method
c.getAttr() # again call parent's method

This would produce following result:

Calling child constructor

Calling child method

Calling parent method

Parent attribute : 200

182

Similar way you can drive a class from multiple parent classes as follows:

class A: # define your class A

.....

class B: # define your calss B

.....

class C(A, B): # subclass of A and B

.....

You can use issubclass() or isinstance() functions to check a relationships of two classes

and instances:

The issubclass(sub, sup) boolean function returns true if the given subclass

sub is indeed a subclass of the superclass sup.

The isinstance(obj, Class) boolean function returns true if obj is an instance of

class Class or is an instance of a subclass of Class

Overriding Methods:

You can always override your parent class methods. One reason for overriding

parent's methods is because you may want special or different functionality in your

subclass.

183

Example:

#!/usr/bin/python

class Parent: # define parent class

def myMethod(self):

print 'Calling parent method'

class Child(Parent): # define child class

def myMethod(self):

print 'Calling child method'

c = Child() # instance of child

c.myMethod() # child calls overridden method

This would produce following result:

Calling child method

184

Parameterless Constructor

class Addition:

x = 0

y = 0

z = 0

def __init__(self):

Addition.x = int(raw_input("Enter the X Value: "))

Addition.y = int(raw_input("Enter the Y Value: "))

def Add(self):

Addition.z = Addition.x + Addition.y

print "Addition of the Two Numbers:", Addition.z

add = Addition()

add.Add();

185

Parameterized Constructor

class Addition:

x = 0

y = 0

z = 0

def __init__(self,a,b):

Addition.x = a

Addition.y = b

def Add(self):

Addition.z = Addition.x + Addition.y

print "Addition of the Two Numbers:", Addition.z

x = int(raw_input("Enter the X Value: "))

y = int(raw_input("Enter the Y Value: "))

add = Addition(x,y)

add.Add();

186

How to Call Super Class Constructor using Sub Class Constructor in Python

class A:

a = 0

b = 0

def __init__(self,x,y):

A.a = x

A.b = y

def display_1(self):

print "The X Value is:",A.a

print "The Y Value is:",A.b

class B(A):

c = 0

def __init__(self,x,y,z):

A.__init__(self,x,y)

B.c = z

def display_2(self):

print "The Z Value is:",B.c

b = B(10,20,30)

b.display_1()

b.display_2()

187

EXECUTION ENVIRONMENT

There are multiple ways in Python to run a command or execute a file on disk. It all

depends on what you are trying to accomplish. There are many possible scenarios

during execution:

1. Remain executing within our current script

2. Create and manage a subprocess

3. Execute an external command or program

4. Execute a command which requires input

5. Invoke a command across the network

6. Execute a command creating output which requires processing

7. Execute another Python script

8. Execute a command or program in a secure environment

9. Execute a set of dynamically-generated Python statements

10. Import a Python module (and executing its top-level code)

188

Callable Objects

A number of Python objects are what we describe as "callable," meaning any object

which can be invoked with the function operator "()". The function operator is placed

immediately following the name of the callable to invoke it. For example, the function

"foo" is called with "foo()". You already know this. Callables may also be invoked via

functional programming interfaces such as apply(), filter(), map(), and reduce().Python

has four callable objects: functions, methods, classes, and some class instances. Keep

in mind that any additional references or aliases of these objects are callable, too.

Functions

The first callable object we introduced was the function. There are three types of

different function objects, the first being the Python built-in functions.

Built-in Functions (BIFs)

BIFs are generally written as extensions in C or C++, compiled into the Python

interpreter, and loaded into the system as part of the first (built-in) namespace. As

mentioned in previous chapters, these functions are found in the __builtin__ module and

are imported into the interpreter as the __builtins__ module. In restricted execution

modes, only a subset of these functions is available.

189

BIF Attribute Description

bif.__doc__ documentation string

bif.__name__ function name as a string

bif.__self__ set to None (reserved for built-

in methods)

You can verify these attributes by using the dir() built-in function, as indicated below

using the type() BIF as our example:

>>> dir(type)

['__doc__', '__name__', '__self__']

Internally, built-in functions are represented as the same type as built-in methods, so

invoking the type() built-in function on a built-in function or method outputs

"builtin_function_or_method," as indicated in the following example:

>>> type(type)

<type 'builtin_function_or_method‘>

User-defined Functions (UDFs)

The second type of function is the user-defined function. These are generally defined at

the top-level part of a module and hence are loaded as part of the global namespace

once the built-in namespace has been established). Functions may also be defined in

other functions;

190

however, the function at the innermost level does not have access to the containing

function's local scope. As indicated in previous chapters, Python currently supports only

two scopes: the global scope and a function's local scope. All the names defined in a

function, including parameters, are part of the local namespace.

UDF Attribute Description

udf.__doc__ documentation string (also udf.func_doc)

udf.__name__ function name as a string (also udf.func_name)

udf.func_ code byte-compiled code object

udf.func_ defaults default argument tuple

udf.func_ globals global namespace dictionary; same as calling globals(x)

from within function Internally, user-defined functions are of the type "function," as

indicated in the following example by using type():

>>> def foo(): pass

>>> type(foo)

<type 'function'>

lambda Expressions (Functions named "<lambda>")

Lambda expressions are the same as user-defined functions with some minor

differences. Although they yield function objects, lambda expressions are not created

with the def statement and instead are created using the lambda keyword. Because

lambda expressions do not provide the infrastructure for naming the code which are tied

191

to them, lambda expressions must be called either through functional programming

interfaces or have their reference be assigned to a variable, and then they can be

invoked directly or again via functional programming. This variable is merely an alias

and is not the function object's name. Function objects created by lambda also share

all the same attributes as user-defined functions, with the only exception resulting

from the fact that they are not named; the __name__ or func_name attribute is given the

string "<lambda>". Using the type() built-in function, we show that lambda expressions

yield the same function objects as user-defined functions:

>>> lambdaFunc = lambda x: x * 2

>>> lambdaFunc(100)

200

>>> type(lambdaFunc)

<type 'function'>

In the example above, we assign the expression to an alias. We can also

invoke type() directly on a lambda expression:

>>> type (lambda: 1)

<type 'function'>

Let's take a quick look at UDF names, using lambdaFunc above and foo from the

preceding subsection:

192

>>> foo.__name__

'foo'

>>> lambdaFunc.__name__

'<lambda>'

Methods

In the previous chapter, we discovered methods, functions which are defined as part of a

class— these are user-defined methods. Many Python data types such as lists and

dictionaries also have methods, known as built-in methods. To further show this type of

"ownership," methods are named with or represented alongside the object's name via

the dotted-attribute notation.

Built-in Methods (BIMs)

We discussed in the previous section how built-in methods are similar to built-in

functions. Only built-in types (BITs) have BIMs. As you can see below, the type() built-in

function gives the same output for built-in methods as it does for built-in functions—note

how we have to provide a built-in type (object or reference) in order to access a BIM:

>>> type([].append)

<type 'builtin_function_or_method'>

Furthermore, both BIMs and BIFs share the same attributes, too. The only exception is

that now the __self__ attribute points to a Python object (for BIMs) as opposed to None

(for BIFs):

193

BIM Attribute Description

bim.__doc__ documentation string

bim.__name__ function name as a string

bim.__self__ object the method is bound to

By convention, a BIT should have the following lists of its BIMs and (built-in) attributes.

BIT Attribute Description

bit.__methods__ list of (built-in) methods

bit.__members__ list of (built-in) data attributes

Recall that for classes and instances, their data and method attributes can be obtained

by using the dir() built-in function with that object as the argument to dir(). Apparently,

BITs have two attributes that list their data and method attributes. Attributes of BITs may

be accessed with either a reference or an actual object, as in these examples:

>>> aList = ['on', 'air']

>>> aList.append('velocity')

>>> aList

['on', 'air', 'velocity']

>>> aList.insert(2, 'speed')

>>> aList

['on', 'air', 'speed', 'velocity']

>>>

>>> [].__methods__

['append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

>>> [3, 'headed', 'knight'].pop() 'knight'

194

User-defined Methods (UDMs)

User-defined methods are contained in class definitions and are merely "wrappers"

around standard functions, applicable only to the class they are defined for. They may

also be called by subclass instances if not overridden in the subclass definition. As

explained in the previous chapter, UDMs are associated with class objects (unbound

methods), but can be invoked only with class instances (bound methods). Regardless of

whether they are bound or not, all UDMs are of the same type, "instance method," as

seen in the following calls to type():

>>> class C: # define class

… def foo(self): pass # define UDM

…

>>> c = C() # instantiation

>>> type(C.foo) # type of unbound method

<type 'instance method'>

>>> type(c.foo) # type of bound method

<type 'instance method'>

UDMs have the following attributes:

UDM Attribute Description

udm.__doc__ documentation string

udm.__name__ method name as a string

udm.im_class class which method is associated with

udm.im_func f unction object for method (see UDFs)

udm.im_self associated instance if bound, None if

unbound

195

Executable Object Statements and Built-in Functions

Python provides a number of built-in functions supporting callables and executable

objects, including the exec statement. These functions let the programmer execute

code objects as well as generate them using the compile () built-in function

Built-in Function

or

Statement Description

196

callable()

callable() is a Boolean function which determines if an object type can be invoked via the

function operator (()). It returns 1 if the object is callable and 0 otherwise. Here are

some sample objects and what callable returns for each type:

>>> callable(dir) # built-in function

1

>>> callable(1) # integer

0

compile ()

compile () is a function which allows the programmer to generate a code object

on the fly, that is, during run-time. These objects can then be executed or evaluated

using the exec statement or eval() built-in function. It is important to bring up the point

that both exec and eval() can take string representations of Python code to execute.

When executing code given as strings, the process of byte-compiling such code must

occur every time.

The compile() function provides a one-time byte-code compilation of code so

that the precompile does not have to take place with each invocation. Naturally, this is

an advantage only if the same pieces of code are executed more than once. In these

cases, it is definitely better to precompile the code.

197

All three arguments to compile () are required, with the first being a string representing

the Python code to compile. The second string, although required, is usually set to the

empty string. This parameter represents the file name (as a string) where this code

object is located or can be found. Normal usage is for compile () to generate a code

object from a dynamicallygenerated string of Python code—code which obviously does

not read from an existing file. The last argument is a string indicating the code object

type.

There are three possible values:

'eval' evaluatable expression [to be used with eval()]

'single' single executable statement [to be used with exec]

'exec' group of executable statements [to be used with exec]

Evaluatable Expression

>>> eval_code = compile('100 + 200', '', 'eval')

>>> eval(eval_code)

300

Single Executable Statement

>>> single_code = compile('print "hello world!"', '', 'single')

>>> single_code

<code object ? at 120998, file "", line 0>

>>> exec single_code

hello world!

198

sys.exit() and SystemExit

The primary way to exit a program immediately and return to the calling program is the

exit() function found in the sys module. The syntax for sys.exit() is:

sys.exit(status=0)

When sys.exit() is called, a SystemExit exception is raised. Unless monitored (in a try

statement with an appropriate except clause), this exception is generally not caught

nor handled, and the interpreter exits with the given status argument, which defaults to

zero if not provided. SystemExit is the only exception which is not viewed as an error. It

simply indicates the desire to exit Python. One popular place to use sys.exit() is after an

error is discovered in the way a command was invoked. In particular, if the arguments

are incorrect, invalid, or if there are an incorrect number of them.

sys.exitfunc()

sys.exitfunc() is disabled by default, but can be overridden to provide additional

functionality which takes place when sys.exit() is called and before the interpreter exits.

His function will not be passed any arguments, so you should create your function to

take no arguments. As described in Beazley, if sys.exitfunc has already been overridden

by a previously defined exit function, it is good practice to also execute that code as part

of your exit function. Generally, exit functions are used to perform some type of

shutdown activity, such as closing a file or network connection, and it is always a good

idea to complete these maintenance tasks, such as releasing previously held system

resources.

199

THE END

